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ABSTRACT

A solution for identity and facial expression recognition is proposed
using a two stage classifier approach using low dimensional repre-
sentation of the geometry of the face. Face geometry is extracted
from input images using Active Appearance Models (AAM) and low
dimensional manifolds were then derived using Laplacian Eigen-
Maps (LE) resulting in two types of manifolds, one for model iden-
tity and the other for person-specific facial expression. The first
stage uses a multiclass Support Vector Machines (SVM) to estab-
lish identity across expression changes. The second stage deals with
person-specific expression recognition, and is composed by a net-
work of seven Hidden Markov Models (HMM) displaced in parallel,
each one specialized on the several facial emotions analysed. The
decision was made by the sequence that yielded the highest prob-
ability. For evaluation proposes a database was build consisting on
6770 images captured from 4 people exhibiting 7 different emotions.
The identity overall recognition rate was 96.8%. Facial expression
results are identity dependent, and the most expressive individual
achieves 81.2% of overall recognition rate.

1. INTRODUCTION

Facial expression is one of the most powerful, natural and immediate
means for humans to share their emotions and intentions. Psycho-
logical studies focus on the interpretation on this mean to interact
and describe that there are six basic emotions universally recognized
[1], namely: joy, sadness, surprise, fear, anger and disgust. An au-
tomatic, efficient and accurate facial expression extraction system
would thus be a powerfull tool assisting on these studies, allowing
also other kinds of applications such as Human Computer Interface
(HCI), smart interactive systems, video compression, etc. The pro-
posed identity and facial expression recognition is based on the idea
that it is straightforward for a human to capture the emotion and
consequently the identity of a mimic, our someone known using
makeup. Humans can understand both the identity/expression based
only on facial motion. This guidance idea lead to face geometry that
could used to recognize the identity and facial expression (focusing
on the six basic emotions plus the neutral one). Laplacian Eigen-
Maps (LE) [2] are nonlinear dimension reduction techniques that de-
rive a low dimensional manifold lying in a higher dimensional more
complex manifold. Such manifold is derived by embedding image
data into a low dimensional space, where a image sequence is then
represented as a trajectory in this feature space. Learning a mani-
fold of this nature requires to derive discriminative facial represen-
tation from raw images. In this work, face images were represented
by a set of 2D sparse feature points extracted using Active Appear-
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ance Models (AAM) [3] that is an effective way to locate facial fea-
tures, modeling both shape and texture from an observed training
set, being able to extract relevant face information without back-
ground interference. Both the identity and person-specific expres-
sion manifolds were learnt in a facial geometric feature space using
LE. The recognition is based on a two stage cascade of classifiers.
The first stage uses a multiclass Support Vector Machines (SVM)
[4] that determines the identity. The second stage deals with the fa-
cial expression, being composed by a network of Hidden Markov
Models (HMM) [5] displaced in a parallel architecture. For an input
image, the AAM fitting framework extracts facial geometric related
features and projects-it into the identity manifold. The first SVM
stage predicts the identity and the respective person-specific model
is loaded to stage two. Here the extracted features are projected into
the expression manifold and the HMM based network decides the
most likely facial expression. This paper is organised as follows:
section 2 gives an introduction to the AAM, the building and fitting
of such model. Section 3 briefly describes how to derive low dimen-
sional manifolds using the LE. Section 4 briefly introduces HMM.
Section 5 addresses to the architecture of the simultaneous identity
and expression recognition system and sections 6 and 7 discusses
experimental results.

2. ACTIVE APPEARANCE MODELS

Active Appearance Models (AAM) [3] are generative nonlinear
parametric models of shape and texture, commonly used to model
faces. These adaptive template matching methods, learn offline the
variability of shape and texture that is captured from a representative
training set, being able to fully describe with photorealistic quality
the trained faces as well as unseen.

2.1. Shape and Texture Models

The shape of an AAM is defined by the vertex locations of a 2D tri-
angulated mesh. Mathematically, the representation used for a sin-
gle v-point shape is a 2v vector given by s = (x1, y1, . . . , xv, yv)T .
The AAM training data consists of a set of annotated images with the
shape mesh marked (usually by hand). The shapes are then aligned
to a common mean shape using a Generalised Procrustes Analy-
sis (GPA), removing location, scale and rotation effects. Principal
Components Analysis (PCA) are then applied to the aligned shapes,
resulting on the parametric model

s = s0 +

nX
i=1

pisi (1)

where the new shapes, s, are synthesised by deforming the mean
shape, s0, using a weighted linear combination of eigenvectors, si. n



is the number of eigenvectors that holds a user defined variance, typ-
ically 95%. pi is a vector of shape parameters which represents the
weights. Building a texture model, requires warping each training
image so that the control points match those of the mean shape, s0.
This texture mapping procedure is performed, using a piece wise
affine warp, i.e. partitioning the convex hull of the mean shape
by a set of triangles using the Delaunay triangulation. Each pixel
inside a triangle is mapped into the correspondent triangle in the
mean shape using barycentric coordinates. A texture model is ob-
tained by applying a low-memory PCA on the normalized textures.
Defining pixel coordinates as x = (x, y)T , the appearance of the
AAM is an image, A(x), defined over the pixels x ∈ s0 such as
A(x) = A0(x) +

Pm
i=1 λiAi(x), x ∈ s0. The appearance A(x)

can be expressed as a base appearance A0(x) plus a linear combina-
tion of m appearance images Ai(x) (EigenFaces). The coefficients
λi are the appearance parameters.

2.2. Model Fitting

Fitting an AAM is usually formulated [6] as minimizing the texture
error, in the least square sense, between the model instance A(x) and
the input backwarped image onto the base mesh I(W(x; p)),

X
x∈s0

"
A0(x) +

mX
i=1

λiAi(x)− I(W(x, p))

#2

. (2)

In eq. 2 the warp W is the piecewise affine warp from the base
mesh s0 to the current AAM shape s. Hence, W is a function of
the shape parameters p. Notice that, the shape normalization on the
model building process (Procrustes Analysis) the AAM do not model
similarity transformations to the target image. Refer to [6] where it
is shown how to include it on the warp W(x; p).

The Simultaneous Inverse Compositional (SIC) [7] minimize eq.
2 by performing a Gauss-Newtow gradient descent optimization si-
multaneously on the warp parameters p and the appearance param-
eters λ, with respect to ∆p and ∆λ, updating the warp by inverse
composition: W(x; p) ← W(x; p) ◦W(x;∆p)−1 and the appear-
ance parameters additively: λ←λ+∆λ. Denoting, q = (pT |λT )T ,
i.e. q is an n+m dimensional vector containing the warp parameters
p and the appearance λ, the m + n Steepest Descent images [7] are
of the form

SDSIC(x) =

„
∇A

∂W
∂p1

, · · · ,∇A
∂W
∂pn

, A1(x), · · · , Am(x)

«
(3)

where∇A is defined as∇A = ∇A0 +
Pm

i=1 λi∇Ai. The parame-
ters update is computed as

∆q = −H−1
SIC

X
x∈s0

SDT
SIC(x)E(x) (4)

where HSIC is the Gauss-Newtow approximation of the Hessian
given by

HSIC =
X
x∈s0

SDT
SIC(x)SDSIC(x), (5)

and the error image,E(x), is defined as

E(x) = I(W(x; p))−
"
A0(x) +

mX
i=1

λiAi(x)

#
. (6)

The Simultaneous Inverse Compositional, when compared with
other fitting approaches, such as the Project-Out [6] or the precom-
puted numerical estimate [3], work rather slow, since the Steepest

Descent images depend on the appearance parameters and they have
to re-computed in every iteration. On the other hand, SIC achieves
the better fitting accuracy which is desirable for our proposes. Start-
ing with a given estimate for the model, q0, and a rough estimate
of the location of the face (provided by AdaBoost [8] method),
an AAM model can be fitted with SIC following the algorithm 1.
Figure 1 shows an example of AAM fitting into a target image.

Algorithm 1 Simultaneous Inverse Compositional Image Alignment
1: Evaluate the gradients∇A0 and∇Ai for i = 1, · · · , m

2: Evaluate the Jacobian of the warp
∂W

∂p
at (x; 0)

3: while MaxIterations reached or |∆q| < ε do
4: Warp I with W(x; p) to compute I(W(x; p))
5: Compute the error image, E(x), using eq. 6

6: Compute the Steepest Descent images, SD(x), using eq. 3

7: Compute the Hessian matrix, H, eq. 5

8: Compute the parameters updates, ∆q, with eq. 4

9: Inverse Compose the Warp W(x; p) ← W(x; p) ◦ W(x; ∆p)−1

10: Update the appearance parameters λ←λ+∆λ

11: end while

(a) Input I (b) 1st (c) 2nd (d) 5th (e) 12th (f) Final

Fig. 1. AAM fitting.

3. LAPLACIAN EIGENMAPS

Laplacian EigenMaps (LE) [2] are nonlinear dimension reduction
techniques that derive a low dimensional manifold lying in a higher
dimensional more complex manifold. The LE builds a graph that
incorporates neighborhood information of the dataset and using the
notion of the Laplacian of the graph, computes a low dimensional
representation that optimally preserves local neighborhood informa-
tion. Given k feature points x1, · · · , xk ∈ <l,a weighted graph with
k nodes is build, one for each point, with a set of edges connecting
neighboring points. The embedding map is found by computing the
eigenvectors of the graph Laplacian [2]. See algorithm 2 where this
method is described. Finding such embedding map, Φ, requires tun-
ing n nearest neighbors for graph building and select the number of
dimensions, m, where the input features were projected into.

Algorithm 2 Laplacian EigenMaps
- Build the Adjacency Graph:
Nodes i and j (or j and i) are connected by an edge to the n nearest neighbors.
- Choosing the weights Wij : (if i and j are connected by an edge) then Wij = 1
- Build EigenMaps:
Compute eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf (7)

where Dii =
P

j Wji is a diagonal weight matrix and L = D − W is the Laplacian matrix. Let
f0, · · · , fk−1 be the solutions of eq. 7 order by eigenvalues λ0 = 0 ≤ λ1 ≤ · · · ≤ λk−1).
Leaving out the eigenvector f0 corresponding to eigenvalue 0, the embedding m-dimensional Euclidian space is given
by Φ = [f1|f2| · · · |fm].

4. HIDDEN MARKOV MODELS

Hidden Markov Models (HMM) [5] have been widely used for many
classication and modeling problems. One of the main advantages of



HMMs is their ability to model nonstationary signals or events. It
uses the transition probabilities between the hidden states and learns
the conditional probabilities of the observations given the state of the
model. An HMM is given by the following set of parameters [5]:

Ai,j = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ h (8)
B = bj(Ot) = P (Ot|qt = Sj), 1 ≤ j ≤ h (9)

πi = P (q1 = Si) (10)

where A is the state transition probability matrix, B is the observa-
tion probability distribution, and π is the initial probabilities. The
number of (hidden) states of the HMM is given by h. Observations
(Ot) at time t can be either discrete or continuous. In our case, the
continuous case (the signal are measurements of the facial motion),
will be given by the parameters of the probability distribution func-
tion of the observations (normally chosen to be the Gaussian distri-
butions). B ∼ N(µi, Σi), 1 ≤ i ≤ h where µi and Σi are the mean
the full covariance matrix respectively.

5. IDENTITY AND FACIAL EXPRESSION RECOGNITION

The proposed solution models both identity and facial expression
in independent low dimensional manifolds, building person-specific
expression models. The different manifolds were derived from em-
bedding image data into a low dimensional subspace using Lapla-
cian EigenMaps (LE) [2]. Learning these manifolds requires a dis-
criminative facial representation from images, that is provided by the
AAM fitting framework, see figure 1, where face images are repre-
sented by a set of sparse 2D feature point. As discriminatory fea-
tures, insted of (x, y) feature points, there were used AAM related
geometric features, i.e. regarding eq. 1 the shape parameters, p,
provide the same geometric information but using less dimensional
features (n << 2v). Face normalization is done by only selecting
the shape parameters that model deformation (ignoring the 4 simi-
larity parameters, refer to [6]). Both identity,ΦI , and person-specific
expression manifolds ΦEi (with respect to subject i) were then learnt
in a facial geometric feature space, consequently, a image sequence
from a test subject describing a facial emotion (starting from the
neutral expression, then exhibiting an emotion into a maximum of
expressivity and returning back to the neutral) is represented as a
trajectory in the learnt manifold. See figure 3. These manifolds were
build using LE representations for the shape parameters (which are
related to face geometry). This approach maps the shape parameters,
p, into a less dimensional space, i.e. p′ = ΦT p, where the mapped
features in our experiments acquire a huge discrimination power. As
mentioned two kinds of LE manifolds were derived: The first type of
manifold (lets call it identity manifold ΦI ) was built using data from
all individuals, see figure 2; the second type (the expression mani-
fold ΦEi) uses data only from a single individual, emphasising the
differences in individual facial motion of the different expressions,
see figure 3. This system holds an identity manifold and expression
manifold for each of the individuals in the training set. For recogni-
tion proposes, an approach with two stage cascade of classifiers was
used. The first stage deals with identity recognition (across expres-
sion changes) where a multiclass Support Vector Machines (SVM)
[4] was trained with the identity manifold resulted data. The person-
specific expression recognition, due the temporal dependence dur-
ing the evolution of a facial emotion, is performed on the second
stage using Hidden Markov Models (HMM) [5]. Seven HMM dis-
placed in a parallel architecture were trained, each one specialized
on the analysed expressions. Input observation sequences (expres-
sion manifold projected features) fed each one of the HMM and the

final decision was based on the sequence that yielded the highest
(forward-backward) probability.

Summarizing, the system has a feature extracting mechanism
and a two stage cascade classifiers trained with embedded manifold
data. For an input image, the AAM fitting framework extracts the
normalized shape parameters, p. These parameters are projected into
the identity manifold p′ = ΦT

I p, and the first SVM stage predict the
identity i for the projected parameters p′. The second stage loads
the expression manifold, ΦEi, for the predicted identity. This stage
consists on a network of seven HMM displaced in a parallel architec-
ture. The input features are projected into the expression manifold,
p′′ = ΦE

T
i p and the predicted expression is the one whose HMM

model generated sequence yielded the highest probability.

6. EXPERIMENTAL RESULTS

For the purpose of this work, a Facial Dynamics Database was built.
It consists of 4 individuals, in a frontal position, showing 7 different
facial expressions, namely: neutral expression, happiness, sadness,
surprise, anger, fear and disgust. All facial emotions were taken by
starting and ending on the neutral expression. Each individual re-
peated all facial emotions four times. The dataset is formed by a
total of 6770 images (640 × 480). The AAM model was build us-
ing a total of 28 images (7 images for each of the 4 person). Since
the AAM will be used to fit every frame of the captured database, it
should held as much shape variation as possible. The training im-
ages were then composed by the most expressive images of the 7
emotions (from a random repetition sequence). These training im-
ages were hand annotated using v = 58 landmarks. Training the
model holding 95% of shape and appearance variance produces an
AAM with n = 18 shape parameters and m = 29 EigenFaces. All
the 6770 frames of the Facial Dynamics Database were then fitted
using the AAM model, retrieving the shape parameters, p, for each
frame. Two main schemes were used for the manifold building: set-
ting data for identity and setting the data for the expressions of each
individual. A total of 5 manifolds were constructed (one identity
manifold plus four individual-specific expression manifolds). These
LE manifolds were build with both the number of adjacency graph
neighbours, and the number of dimensions where the input features
were projected into, found by cross-validation. Figure 2 and 3 shows
the manifolds produced for the identity and expressions respectively.
Regarding figure 3 it is noticed that person 1 (figure 3-top-right) is
the most expressive and all facial emotions start and end from the
neutral expression. This explains the high concentration of projected
points over the neutral cluster. On the first stage, a multiclass SVM
was trained with the input features of the identity manifold. The
SVM classication was achieved using one-against-all voting scheme
with a Gaussian Radial Basis Function (RBF) kernel. The kernel
parameters and the missclassification penalty, were found also by
cross-validation. Each individual-specific expression models in the
second stage is composed by a network of seven HMM models dis-
placed in a parallel architecture. These HMM models are specialized
in each of the seven expressions. Regarding h as the of number hid-
den states from a given HMM, h Gaussians pdf were fitted on the
low dimensional data of the respective expression using K-means.
Then Baumk-Welch re-estimation was used to improve the param-
eters (πi, Ai, µi, Σi) estimates. The optimal number of states, h,
was found by cross-validation analysing the likelihood outputs on
the re-estimation process. The final decision of the HMM network
is made by evaluating the highest forward-backward probability on
the sequence path provided by the Viterbi algorithm from all of the
seven HMM. To evaluate the performance of the system the dataset



was divided into 4 fold for cross validation F1, F2, F3 and F4, that
matches to the 4 repetitions of all expressions that each subject has
made. The results shown are confusion matrices that were obtained
from the cross-validation of the 4 folds (i.e. test F1, train F2,F3,F4;
test F2, train F1,F3,F4; ... ). Identity and expression models were
evaluated independently. Figure 2-right displays results for the iden-
tity recognition and table 1 shows results for the expression models
confusion matrices for each person in the dataset. Notice that, due
the HMM based recognition, the results in table 1 could be mis-
leading. Table 1 shows classification for each of the 6770 frames,
but when the observations don’t have length enough the HMM don’t
produce reliable results misclassifying many frames (that happends
during the start of an emotion when no previous information is avail-
able). For this reason the HMM network decision at the end of each
observation sequence (each full expression) is also shown (in blue at
table 1).
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Overall recognition rate = 96.88%

Fig. 2. Left - Identity manifold learnt with geometric AAM related
features for 4 persons. Right - Identity model confusion matrix.
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Fig. 3. Low dimensional manifolds learnt with geometric AAM re-
lated features for 4 persons exhibiting 7 expressions several turns
each. Top-right, top-left, bottom-right and bottom-right figures rep-
resent the expression models for person 1, 2 ,3 and 4 respectively.

7. CONCLUSIONS

Human Identity and facial expression recognition were achieved us-
ing a two stage classifier approach using low dimensional represen-
tation of the geometry of the face. Facial geometry related features
were extracted using the Active Appearance Models and low di-
mensional manifolds for identity and person-specific expression (ΦI

Table 1. Expression model confusion matrices for each one of the
individuals (total of 6770 images).

Person 1 Neut Happ Sad Surp Ang Fear Disg
Neut 58.40 (3) 0 (0) 3.05 (0) 0 (0) 16.03 (1) 0 (0) 22.52 (0)
Happ 1.25 (0) 95.00 (4) 0 (0) 0 (0) 3.75 (0) 0 (0) 0 (0)
Sad 0.59 (0) 0 (0) 97.92 (4) 1.47 (0) 0 (0) 0 (0) 0 (0)
Surp 0 (0) 0 (0) 0.66 (0) 99.34 (4) 0 (0) 0 (0) 0 (0)
Ang 0 (0) 2.69 (0) 5.09 (0) 0.59 (0) 87.72 (4) 1.20 (0) 2.69 (0)
Fear 0 (0) 0 (0) 0 (0) 29.37 (1) 2.23 (0) 68.40 (3) 0 (0)
Disg 0 (0) 0 (0) 4.14 (0) 0.95 (0) 32.80 (1) 0 (0) 62.10 (3)

Overall recognition rate = 81.27%

Person 2 Neut Happ Sad Surp Ang Fear Disg
Neut 47.32 (2) 1.67 (0) 0 (0) 0 (0) 0 (0) 41.94 (2) 9.06 (0)
Happ 0 (0) 70.34 (3) 0 (0) 25.85 (1) 0 (0) 3.80 (0) 0 (0)
3 Sad 0 (0) 0.35 (0) 93.43 (4) 0.69 (0) 0 (0) 1.38 (0) 4.15 (0)
Surp 0 (0) 0 (0) 0.38 (0) 97.32 (4) 0.76 (0) 1.53 (0) 0 (0)
Ang 0 (0) 0 (0) 1.84 (0) 0 (0) 91.70 (4) 0.92 (0) 5.53 (0)
Fear 0 (0) 1.23 (0) 2.05 (0) 31.14 (2) 0 (0) 61.47 (2) 4.09 (0)
Disg 15.30 (1) 0.65 (0) 0 (0) 9.12 (0) 1.95 (0) 2.93 (0) 70.03 (3)

Overall recognition rate = 75.95%

Person 3 Neut Happ Sad Surp Ang Fear Disg
Neut 61.30 (2) 20.10 (1) 0 (0) 0 (0) 18.59 (1) 0 (0) 0 (0)
Happ 0.86 (0) 96.53 (4) 0 (0) 2.59 (0) 0 (0) 0 (0) 0 (0)
Sad 0.44 (0) 0 (0) 94.76 (4) 0.87 (0) 2.18 (0) 1.31 (0) 0.44 (0)
Surp 23.40 (1) 0 (0) 0 (0) 76.06 (3) 0 (0) 0.53 (0) 0 (0)
Ang 0 (0) 2.38 (0) 2.38 (0) 1.90 (0) 92.86 (4) 0.48 (0) 0 (0)
Fear 21.25 (1) 0 (0) 6.87 (0) 16.87 (1) 1.25 (0) 46.25 (2) 7.50 (0)
Disg 27.03 (1) 1.35 (1) 16.21 (0) 0 (0) 9.46 (0) 1.35 (0) 44.60 (2)

Overall recognition rate = 73.20%

Person 4 Neut Happ Sad Surp Ang Fear Disg
Neut 25.00 (1) 8.00 (0) 0 (0) 39.00 (2) 28.00 (1) 0 (0) 0 (0)
Happ 0 (0) 95.79 (4) 0 (0) 0.47 (0) 0 (0) 0 (0) 3.74 (0)
Sad 1.51 (0) 30.65 (1) 53.26 (3) 6.53 (0) 8.04 (0) 0 (0) 0 (0)
Surp 1.40 (0) 2.80 (0) 0 (0) 66.35 (3) 2.80 (0) 26.63 (1) 0 (0)
Ang 0 (0) 0.87 (0) 2.19 (0) 4.82 (0) 87.72 (4) 0.43 (0) 3.95 (0)
Fear 0 (0) 0 (0) 0 (0) 22.00 (1) 0 (0) 80.00 (3) 0 (0)
Disg 0 (0) 0 (0) 0 (0) 6.47 (0) 0 (0) 0.49 (0) 93.03 (4)

Overall recognition rate = 71.30%

and ΦEi) were derived using LE. For an input image, the AAM fit-
ting framework extracts the normalized shape parameters, p, and the
first SVM stage predicts the identity for the projected parameters
p′. The second stage is composed by a network of seven Hidden
Markov Models displaced in parallel, each one specialized on the
several facial emotions analysed. The normalized shape parameters
are projected into the expression manifold of the predicted individ-
ual, p′′ = ΦE

T
i p, and the predicted expression is the one whose

HMM generated sequence yielded the highest probability. For eval-
uation proposes a database was build having 6770 images captured
from 4 people exhibiting 7 different emotions. Our 4 fold cross-
validation results show that the system is able to recognize an overall
96.8% in the identity. Since it was used person-specific expression
models, the facial expression is independent on each individual. In
our dataset the most expressive individual achieves an overall recog-
nition rate of 81.2% and the less expressive 71.3%.
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