

Facial Dynamics for Identity and Expression Recognition

Carolina Raposo and Jorge Batista

Main objective: Demonstrate that facial dynamics is a biometric

Motivation

- Advantage over static analysis: facial dynamics is less affected by physical changes such as ageing, gaining weight, wearing glasses or growing a beard
- Research shows that dynamic information may be beneficial for age, gender and identity recognition
- There are many applications for identity and expression recognition : access control, surveillance, in psychology or psychiatry

Methodology

one element (indivual or

facial expression)

Experimental Results

Database 1

• 4 people

• 6 basic expressions with 4 repetitions

No. of	Subtracted DB		Original DB	
Blocks	Identity Recog.	Expression Recog.	Identity Recog.	Expression Recog.
1x1	76.04%	64.58%	89.58%	62.50%
3x2	91.67%	82.29%	100%	85.42%
5x4	98.96%	89.58%	100%	86.46%

➤ More blocks → histograms created using smaller parts of the faces → more detailed description → higher identity and expression recognition rates

Database 2

• 29 people

Databases 1 and 4

• 5 people (1 from Database 4)

- 6 basic expressions with 3 repetitions
- 2 repetitions with appearance changes

Face	Original DB	Subtracted DB
Painted	27.8%	81.1%
With Foam	0.00%	74.5%

Average identity recognition rates obtained after varying stream lengths and step sizes

➢ Subtracted database → mostly dynamic information is present → significantly better recognition results

Conclusion

• Facial dynamics, in the form of facial expressions, can be used for performing identity recognition

 Using dynamic information alone is advantageous in the presence of a significant number of individuals

• The present method allows the

6 basic expressions without repetitions

Length	Step	% Identity Recog.	% Expression Recog.
25	22 (12%)	100 / 100	91.38 / 99.43
	25 (0%)	98.28/98.38	83.91 / 97.13
35	20 (43%)	100/99.43	99.43 / 98.85
	30 (14%)	98.85 / 98.85	88.51 / 94.25
45	15 (67%)	100 / 100	100 / 100
	24 (47%)	100 / 100	100/97.70

➢ Smaller steps → more overlapping
between training and testing sequences
→ higher recognition rates

identification of an individual who cannot be recognised using texture and shape information

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA This work was supported by the Portuguese Science Foundation (FCT) with grant PTDC/EIA-CCO/108791/2008.