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Resumo

Estudos em Psicologia mostram que a dinâmica facial é um sistema biométrico, i.e., pode

ser usada para reconhecimento de identidade. Com base nesta informação, a presente tese

pretende demonstrar que o movimento facial por si só é suficiente para a identificação de

pessoas, através de um conjunto de experiências. Em oposição à análise estática, a pesquisa

relacionada com movimentos faciais é uma área de investigação relativamente recente. Para

além do reconhecimento de identidade, o reconhecimento de expressões é também efectuado,

usando diversas técnicas. O trabalho desenvolvido inclui o uso de diferentes descritores faci-

ais que utilizam informação de forma, como é o caso dos Modelos de Forma Activa (ASM),

e informação textural, como nos Padrões Binários Locais (LBP). No entanto, visto que é

desejável analisar apenas as componentes dinâmicas, são usadas técnicas para remover in-

formação de forma e textura, como a subtracção de imagens e os campos de fluxo óptico.

As experiências são desenvolvidas usando estes descritores e a análise dos dados é efectuada

usando duas técnicas principais: deformação dinâmica temporal (DTW) e análise de ten-

sores. Foram usadas quatro bases de dados diferentes para avaliar a eficácia dos diferentes

procedimentos. Estas bases de dados incluem diferentes números de indiv́ıduos, sequências

de expressões faciais com ou sem repetições e variedade de etnias e condições de luminosi-

dade. Uma destas bases de dados foi criada como parte do presente trabalho, de modo a

que sejam efectuadas experiências usando um indiv́ıduo com alterações significativas na sua

aparência. A novidade deste trabalho inclui o desenvolvimento de alguns procedimentos que

combinam técnicas existentes de novas maneiras. Isto é importante pois foi verificada a su-

perioridade destes novos métodos em relação a métodos já existentes. Em geral, todas as

experiências produziram bons resultados, demonstrando que a dinâmica facial é um sistema

biométrico conveniente. Foi conclúıdo que, para bases de dados com poucos indiv́ıduos, usar

informação textural e de forma origina melhores resultados em reconhecimento de identidade.

No entanto, com o aumento do número de pessoas é prefeŕıvel usar apenas a dinâmica facial

para o reconhecimento de identidade e expressões, pois as diferenças interpessoais também

aumentam. Para além disto, usando a base de dados criada neste trabalho, foi mostrado que

os procedimentos desenvolvidos são capazes de identificar o indiv́ıduo cuja aparência é signi-

ficativamente diferente da original, tornando-o quase irreconhećıvel. Esta experiência prova

que a dinâmica facial é, de facto, um sistema biométrico conveniente e mostra a importância

e relevância do presente estudo.

Palavras-Chave: Reconhecimento de Identidade, Reconhecimento de Expressões, Análise

de Tensores, Padrões Binários Locais, Fluxo Óptico.
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Abstract

Psychological studies indicate that facial dynamics is a biometric, i.e., it can be used for

identity recognition. Based on this information, the present thesis attempts to demonstrate

that facial motion alone is sufficient for performing person identification, through a series of

experiments. As opposed to static analysis, research related to facial motion is a relatively

new area of study. Besides identity recognition, expression recognition is also performed, us-

ing several techniques. The work developed includes the usage of different facial descriptors

which make use of shape information, as is the case with Active Shape Models (ASM), and

texture information, as in Local Binary Patterns (LBP). However, since it is desirable to

analyse only the dynamic components, techniques are used for removing shape and texture

information, such as image subtraction and optical flow fields. Experiments are conducted

using these descriptors and data analysis is performed with two major techniques: dynamic

time warping (DTW) and tensor analysis. Four different databases were used for assessing

the efficacy of the different procedures. These databases include different number of individ-

uals, facial expression sequences with or without repetitions and a variety of ethnicity and

lighting conditions. One of these databases was created as part of the present work, so that

experiments using an individual with significant changes in the appearance can be performed.

The novelty in this work includes the development of some procedures which combine exist-

ing techniques in new ways. This is important since the superiority of these new methods

over existing methods has been verified. In general, all the experiments yielded good results,

demonstrating that facial dynamics is a proper biometric. It has been concluded that for

databases with a small number of individuals, using shape and texture information leads to

better identity recognition results. However, as the number of individuals increases, it is

preferable to use only the facial dynamics for both identity and expression recognition, as the

interpersonal differences also increase. Moreover, using the database created in this work, it

has been shown that the developed procedures are capable of identifying an individual whose

appearance is significantly different from the original, making him/her almost unrecognisable.

This experiment proves that facial dynamics is in fact a proper biometric and shows the im-

portance and relevance of the present study.

Key Words: Identity Recognition, Expression Recognition, Tensor Analysis, Local Binary

Patterns, Optical Flow.
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Chapter 1

Introduction

Identity and expression recognition has been a branch of computer vision with growing im-

portance in the past decades. The use of still images of the face of an individual as a

biometric (static analysis) has been a well-researched area. The term “biometrics” refers to

the measurable biological characteristics which are used to quantify the physical features of

an individual for use as a means of identification. Biometrics need to be universal, distinc-

tive and repeatable. In respect to the human face, it is universal in the sense that it is the

same for all people; it is distinctive since all faces are different, except in special cases; and

it is repeatable because it does not change significantly in a short period of time, except

when considering mechanisms such as facial motion (expressions), ageing, gaining weight or

even cosmetic surgery. A relatively new area of study is the dynamics of facial expression.

The term “dynamics”, in this context, can be defined as the changes in facial motion over

sequential time. One of the advantages over static analysis is that facial dynamics are less

affected by physical changes such as ageing, gaining weight, wearing glasses, growing a beard,

etc. Studies show that body and facial movements support person identification. There is

considerable evidence that dynamic information is not redundant and may be beneficial for

various aspect of face processing, including age, gender, and identity recognition. Based on

this knowledge, the main objective of this work is to corroborate the following hypothesis:

facial expressions can be used as an effective biometric for person identification.

1.1 Motivation

Determining the identity of a person automatically is a continually growing subfield of compu-

tational intelligence. Face recognition systems are used to verify the identity of an individual

by matching a given face against a database of known faces. It has become an alternative to

the traditional identification and authentication methods such as the use of keys, ID cards

1



Chapter 1. Introduction 2

and passwords, allowing secure identification and personal verification to be performed. Thus,

face recognition technology can be applied to a wide variety of application areas including

access control for PCs, airport surveillance, private surveillance, criminal identification and

for security in ATM transaction. Moreover, the face recognition system is moving towards

the next-generation smart environment where computers are designed to interact more like

humans. It has become the most convenient tool for human interaction with machines, home

automation systems, and intelligent robots. Because of its natural interpretation (human vi-

sual recognition is mostly based on face analysis) and low intrusiveness (unlike finger print),

face-based recognition is one of the most important biometric traits.

In 1972, Paul Ekman identified six basic emotions: anger, disgust, fear, happiness, sadness

and surprise [3], being these the main target of research recently. Psychological studies show

that emotions, in the form of facial expressions, are more important than spoken words, during

communication. Analysis of this means of interaction between people is currently subject of

attention and thus, an automatic, efficient and accurate facial expression recognition system

is a powerful tool. It is useful in areas such as anthropology, clinical psychology, psychiatry

and neurology since emotions automatically estimated by computers are considered to be

more objective than those labelled by people. Facial expression recognition can also be used

by service providers in order to obtain implicit user feedback from the customers’ facial

expressions. In the computer graphic area, facial expressions estimated from real images

can be used to animate synthetic characters and produce high quality computer animation.

Recent research has shown that it is not only the expression itself, but also its dynamics that

are important when attempting to decipher its meaning. Ekman et al. [4] suggest that the

dynamics of facial expression provides unique information about emotion that is not available

in static images.

The growing importance of facial dynamics as a field of research, in both identity and ex-

pression recognition, is due to the many applications presented above and to the fact that

it constitutes a relevant biometric, providing an interesting topic for the development of this

work.

1.2 Related Work

Psychological studies show that facial dynamics are relevant when performing recognition of

identity, gender and expressions. In [5] , an experiment demonstrated that moving displays

of the six prototypical expressions (happiness, sadness, fear, surprise, anger and disgust) were

recognised more accurately than static displays of the face at the apex of the expressions. This

indicated that facial expressions can be recognised in the absence of information about facial

features. Experiments described in [6] show that people are capable of discriminating between
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individuals and between genders from motion-based information alone. In [7], the results of

identifying moving and still videotaped faces of famous and unknown people indicated that

the first are significantly better recognised, proving again that facial dynamics are relevant in

identity recognition. Conclusions obtained in [8] reveal that dynamic information contributes

more to recognition in poor viewing conditions such as poor illumination, low-image resolu-

tion, recognition from distance etc. and that with increasing viewer’s experience, dynamic

information becomes more relevant. Despite the evidences from psychological studies already

presented about the value of facial dynamics in face and expression recognition, only recently

have researchers started to pay an important attention to the use of facial dynamics in auto-

matic face analysis . The role of facial dynamics in facial expression recognition has been the

focus of research and important contributions have already been made [9].

In [10], Local Binary Pattern (LBP) features are computed and Supervised Locality Preserv-

ing Projections (SLPP) are used to derive a generalised low dimensional expression manifold.

Then, a Bayesian temporal model of the manifold is formulated in order to represent the

facial expression dynamics. Results show that using dynamic information is advantageous

when compared to using static information alone. Instead of using SLPP, Isomap embedding

is used in [11] for obtaining the low dimensional expression manifold. A Gaussian Mixture

Model (GMM) is then applied to cluster data and an Active Shape Model (ASM) is learnt

for each cluster. Probabilist tracking is then performed to account for face motion. In [12],

Locally Linear Embedding (LLE) is used for estimating the manifold of texture variation due

to facial expression and it has been show that texture information provides better results

than shape information alone. LLE is also used in [13] as a dimensionality reduction tech-

nique and Support Vector Machines (SVM) are then used for classification of expressions,

involving the lower face. More recently, Hidden Markov Models (HMM) have been used to

model temporal dynamics of expressions [14] and spatiotemporal Gabor Motion Energy filters

(GME) as a biologically inspired representation for dynamic facial expressions [15]. All of the

examples presented use methods that include an initial dimension reduction, followed by the

classification. In this work, a similar approach is described.

As mentioned before, facial dynamics is not only used for facial expression classification but

also for identity recognition, being this the main focus of the present work. Many dimen-

sionality reduction techniques have been used, such as Laplacian EigenMaps (LE), Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Locality Preserving

Projections (LPP) [16, 17, 18]. Active Shape Models (ASM) and their extension Active Ap-

pearance Models (AAM) are used in video sequences for feature extraction [16, 19, 20, 21]. In

[22] an Extended Volume LBP (EVLBP) operator is presented where texture analysis of video

sequences is performed. Volume LBP is a special case of EVLBP because the difference is

that the number of points forming the neighbourhood is variable. It has been shown that this
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new method yields better results than Volume LBP. HMM are used in [16, 20] for modelling

the dynamics of facial motion, providing a classification based on the probabilities obtained.

In [23], a new kind of HMM is presented (adaptive HMM) in which each HMM is adapted

during testing, resulting in better modelling over time. Another approach uses motion signa-

tures (obtained from feature points which are tracked automatically) to create a tensor [2],

which is a generalisation of the concept of a vector. High-Order Singular Value Decompo-

sition (HOSVD) [24] is then applied for decomposing the tensor and Self-Organising Maps

(SOM) are used for classification. Other methods include the use of Neural Networks such

as the Multi-Layer Perceptron (MLP) [21] and Dynamic Time Warping (DTW), as well as

the related methods: Continuous DTW (CDTW), Derivative DTW (DDTW) and Weighted

derivative DTW (WDTW) [19]. In the latter case, DTW is used for computing the similarity

between data vectors, being an efficient classification method. The present work analyses

different feature extraction, dimensionality reduction and classification methods.

1.3 Overview

The organisation of this thesis was done with the objective of showing the reader that it is

a sequence of procedures which attempt to overcome the disadvantages that arose through-

out the implementation. Chapter 1 introduces the topic, presenting the research already

developed in this area as well as its importance and main applications. Chapter 2 gives a

theoretical background, describing and explaining all the main techniques used in this work

as part of the different procedures. All of these techniques were obtained from available tool-

boxes, indicated in chapter 2. In chapter 3, the actual work developed is presented, where

all six procedures are described, and results are shown. The discussion of the results pro-

vide a good evaluation of the performance of each procedure. The last subsection includes a

description of the databases used, with example frames. Each of the remaining subsections

includes a description of a procedure and its main disadvantages, which are attempted to be

overcome. The first part of this chapter is an explanation of the application of each technique

to facial dynamics. Concrete examples with visualisations of the results of each method are

given with the objective of providing a better understanding for the reader. Lastly, chapter

4 gives all the important conclusions as well as the direction of future work.



Chapter 2

Background Theory

In this section, a theoretical introduction to the techniques used throughout the present work

is given. This allows the reader to understand the general idea and main function of each

method. Some techniques include feature extraction, pattern construction and classification,

being used in different stages of the proposed procedures. All of these techniques were ob-

tained from toolboxes available online.

2.1 Active Shape Models

Active Shape Models (ASM) [25] are statistical models, trained on a set of representative

shapes, which iteratively manipulate themselves to fit an object in an image. In this work,

the referred objects are faces. A set of landmarks (representative points, e.g., the corner of

the left eye) forms a shape. The ASM method detects facial landmarks through a local-based

search constrained by a global shape model, statistically learnt from training data. One shape

is aligned to another with a similarity transform (allowing translation, scaling, and rotation)

that minimises the average euclidean distance between shape points. The mean shape is the

mean of the aligned training shapes (which in this case are manually landmarked faces). The

ASM method starts the search for landmarks from the mean shape aligned to the position

and size of the face determined by a global face detector. It then adjusts the locations of

shape points iteratively until convergence. Four steps of the ASM search are shown in Figure

2.1 [1]. Object identification and location are robust because the models are specific in the

sense that instances are constrained to be similar to those in the training set. They can be

used to locate objects or as feature parameters to be passed to another system. In this work

they are used for automatically locating feature landmarks. One of the ASM used in this

work was downloaded from [1].

5
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Figure 2.1: Steps of an ASM search. The shape model is shown in each picture. Figure
taken/reprinted from [1].

2.2 Volume Local Binary Patterns

Volume Local Binary Patterns (VLBP) are an extension of the classic Local Binary Patterns

(LBP) to perform dynamic texture analysis and represent temporal sequences as vectors. A

brief theoretical explanation of these two methods is given in the following subsections. The

MATLAB code used for computing LBP and VLBP was downloaded from [26].

2.2.1 Local Binary Patterns

The LBP texture analysis operator is defined as a grey-scale invariant texture measure since

it tolerates monotonic grey-scale changes. Moreover, it has a high discriminative power and

involves only simple computations. In general terms, the LBP operator forms labels for the

image pixels and creates a histogram using these labels as a texture descriptor. Firstly, the

neighbourhood of a pixel, composed of P equally spaced pixels on a circle of radius R, is

thresholded with the value of that pixel by computing differences and a binary number is

assigned to it, according to

s(x) =

{
1 if x ≥ 0

0 if x < 0.
(2.1)

Note that the grey-scale invariance is a result of considering only the signs of the differences,

instead of their values. Afterwards, for every pixel in the neighbourhood, a weight is defined.

By summing the multiplied weights and binary values, an LBP code is obtained for each

pixel. Let gc be the grey level of the centre pixel and gp the grey values of the neighbouring

pixels, the LBP code of the centre pixel can be computed by

LBPP,R =
P−1∑
p=0

s(gp − gc)2p. (2.2)

Finally, the occurrences of the LBP codes in the image are collected into a histogram which

is the texture descriptor of the image.
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2.2.2 Volume Local Binary Patterns

The LBP operator only deals with spatial information. To incorporate temporal information,

VLBP can be used. The idea is that instead of considering a 2D neighbourhood, the face

sequence is seen as a rectangular volume and the neighbourhood of each pixel is defined in

three dimensional space. The neighbouring pixels in VLBP are P equally spaced pixels on

a circle of radius R in the present frame (frame t) and P + 1 pixels in the frames t− L and

t+L, where L is the time interval. Here, instead of considering P neighbouring pixels, a total

of 3P + 2 pixels is used. Similarly to Equation 2.2, the VLBP code of a pixel is given by

V LBPL,P,R =
3P+1∑
p=0

s(gp − gc)2p (2.3)

where gp are the grey levels of the pixels in frames t − L, t and t + L. Figure 2.2 shows the

computing procedure for V LBP1,4,1 as an example.

Figure 2.2: Steps of the computing procedure for V LBP1,4,1.

2.3 Optical Flow

Optical flow is a method used for calculating the motion between two image frames which are

taken at times t and t + ∆. This work uses facial motion as a basis for people identification

and thus determining optical flow fields can be of significant aid. Considering the optical

flow as a velocity field associated with image changes, three constraints must be taken into

account:

1. Grey value constancy: A moving point does not vary (instantly) its appearance
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2. Small motion: observed points do not move very far between two consecutive images

3. Spatial coherence: if a point moves, its neighbours exhibit the same behaviour

Using constraints 1) and 2), the brightness constancy equation can be written as

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.4)

where I(x, y, t) is the luminance level of pixel (x, y) at time t and the corresponding δ represent

small variations. The Taylor expansion of I(x+ δx, y + δy, t+ δt) results in

I(x+ δx, y + δy, t+ δt) ≈ I +
δI

δx
δx+

δI

δy
δy +

δI

δt
δt (2.5)

where I = I(x, y, t). Considering equation 2.4 it follows that δI
δx
δx + δI

δy
δy + δI

δt
δt = 0, which

is equivalent to

δI

δx
vx +

δI

δy
vy +

δI

δt
= 0⇒

[
Ix Iy

] [ vx

vy

]
= −It (2.6)

after dividing by δt and making vλ = δλ
δt

and Iλ = δI
δλ
, λ = x, y, t. Since this is an equation

with two unknowns, it is necessary to use constraint 3) and assume that the neighbour pixels

exhibit the same velocity, resulting in the following system of linear equations:[
ΣI2x ΣIxIy

ΣIxIy ΣI2y

][
vx

vy

]
= −

[
IxIt

IyIt

]
. (2.7)

The solution of this system is the velocity vector [vx vy] which can be solved for every pixel

in each frame. In this work, the MATLAB code with the implementation of Optical Flow

was downloaded from [27].

2.4 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure used for identifying patterns

in data, and expressing the data in such a way as to highlight their similarities and differences.

This is a useful technique since it allows the reduction of the number of dimensions in the

data, without much loss of information. It is used as a data reduction technique in order to

describe each shape (face) by a point in a low-dimensional space. Performing PCA on a set

of shapes results in a linear parametric model that gives the approximation of shape s:

s ≈ s0 +
n∑
i=1

pisi (2.8)
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where s0 is the mean shape, si are the eigenvectors which are linearly combined using the

vector of shape parameters, p = [p1, . . . pn]T . n is the number of eigenvectors that holds a

certain variance, being this the dimension of the low-dimensional space. In this work, the

MATLAB code of PCA is part of the MATLAB Toolbox for Dimensionality Reduction ([28]).

2.5 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method commonly used for computing the best alignment

between two signals by warping their time axes. The two signals, which initially had different

temporal dimensions (different duration), after the usage of DTW result in two other signals

with the same duration: time warping. The DTW algorithm allows “elastic” transformation

of time series in order to detect similar shapes with different phases. The alignment path

built by DTW computes distances between points and must satisfy three conditions:

• Boundary condition: The starting and ending points of the warping path must be

the first and the last points of aligned sequences, respectively;

• Monotonicity condition: Points must be order chronologically;

• Step size condition: The shifts in time of the warping path are limited.

Besides computing an alignment between time sequences, DTW also gives a measure of their

similarity. This measure is commonly used for classification [19], as is the case in this work.

Figure 2.3 shows the result of applying DTW to the two misaligned waves (time sequences)

depicted in the first image. The second image shows the accumulated distance matrix and

optimal path as a white line. Darker colours correspond to shorter distances and therefore it

can be seen that the optimal path is the path that yields the shortest distance between the two

sequences. Using this path it is possible to construct the warped signals, which are depicted

in the third image. The connecting path is also shown (fourth image) for better visualisation

of the similarities between these two signals. MATLAB code with the implementation of

DTW was downloaded from [29].

2.6 Tensors

Tensors are multidimensional arrays of data and therefore can be used to analyse multivariate

data. A vector is considered as a first-order tensor and a matrix as a second-order tensor.

In this work tensors are used to describe dynamic sequences of different people performing

different expressions. The notation used in the present chapter is the following: scalars are
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Figure 2.3: Usage of the DTW algorithm on two signals (1st), resulting in an accumulated
distance matrix and optimal path (2nd). The warped signals (3rd) and the connecting path (4th)

are also shown.

denoted by lower case letters (a, b, . . . ), vectors by bold lower case letters (a, b, . . . ), matrices

by bold upper-case letters (A, B, . . . ), and higher-order tensors by calligraphic upper-case

letters (A, B, . . . ). Tensor algebra is performed using TP Tool ([30]).

2.6.1 Tensor Algebra

The order of a tensor can be defined as the number of indices required to write that tensor and,

therefore, matrices all have tensor order 2. The rank of a tensor A, denoted R = rank(A), is

the minimum number of simple tensors necessary to expressA as a linear combination. Tensor

rank extends the notion of matrix rank since the latter is defined as the number of linearly

independent rows or columns. An N th-order tensor A ∈ RI1×I2×...×IN is a simple tensor if it

has rank 1, i.e., if it can be written as the outer product of N vectors: A = u1 ◦u2 ◦ . . . ◦uN .

Thus, a rank-R tensor can be expressed as

A =
R∑
r=1

σru
(r)
1 ◦ u

(r)
2 ◦ . . . ◦ u

(r)
N . (2.9)

A matrix singular value decomposition (SVD) can be expressed as a rank-R decomposition:

M = U1ΣUT
2 =

R∑
i=1

R∑
j=1

σiju
(i)
1 ◦ u

(j)
2 , (2.10)

where U1 is an orthogonal column-space, Σ is a diagonal singular value matrix and U2

is an orthogonal row-space. The mode-n vectors (mode-n space) of an N th-order tensor

A ∈ RI1×I2×...×IN are the In-dimensional vectors obtained from A by varying index in while

keeping the other indices fixed. In the case of a third order tensor, three mode spaces exist

where mode-1 corresponds to column space, mode-2 to row space, and mode-3 to depth space.
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2.6.2 Tensor Flattening

The mode-n vectors of a tensor A ∈ RI1×I2×...×IN are the column vectors of matrix A(n) ∈
RIn×(I1I2...In−1In+1...IN ) that result from flattening (or unfolding) the tensorA. Tensor unfolding

can be considered as splitting a tensor into mode-n vectors and rearranging these vectors

column-wise to form a matrix. An example for a third-order tensor is show in Figure 2.4.

The n− rank of A, as an generalisation of the definition of column and row rank of matrices

Figure 2.4: Flattening of a third-order tensor resulting in matrices A(1), A(2) and A(3). Figure
taken/reprinted from [2].

and denoted Rn, is defined as the dimension of the vector space generated by the mode-n

vectors:

Rn = rankn(A) = rank(A(n)). (2.11)

The mode-n product of a tensor A ∈ RI1×I2×...×IN by a matrix M ∈ RJn×In , denoted by

A ×n M, is a tensor B ∈ RI1×I2×...×In−1×Jn×In+1×...×IN . In terms of flattened matrices, the

mode-n product can be expressed as

B(n) = MA(n) (2.12)

and tensor B is found by folding matrix B(n) back into tensor representation.

2.6.3 Tensor Decomposition

A matrix D ∈ RI1×I2 is a two-mode mathematical object that has two associated vector spaces:

a row space and a column space. SVD orthogonalises these two spaces and decomposes the

matrix as D = U1ΣUT
2 . Using mode-n products, D can be written without the need of a

generalised transpose as D = Σ×1 U1×2 U2. Extending the concept of matrix SVD, N-mode

SVD or Higher Order SVD (HOSVD) decomposes an N -order tensor D into N orthogonal

spaces U1,U2 . . .UN and expresses D as the mode-n product:

D = Z ×1 U1 ×2 U2 . . .×N UN (2.13)
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where Z is the core tensor and is analogous to the singular value matrix that results from

SVD. It governs the interactions between the orthogonal spaces obtained from HOSVD. Figure

2.5 illustrates the result of the HOSVD algorithm used in a third-order tensor.

Figure 2.5: Decomposition of a third-order tensor resulting in matrices U1, U2 and U3, and
core tensor Z. Figure taken/reprinted from [2].

2.6.4 The HOSVD Algorithm

The presented theory allows the creation of an algorithm for decomposing tensor D [24]: For

n = 1 to N :

• Unfold D along dimension n to find matrix D(n);

• Perform SVD on D(n) to compute Un in (2.13) by setting it to be the left matrix of

SVD.

Afterwards, solve for the core tensor: Z = D ×1 UT
1 ×2 UT

2 . . .×N UT
N .

HOSVD is beneficial since it allows a multi-factored space to be decomposed into its con-

stituent modes. The different modes can then be analysed separately and important infor-

mation about the data can be extracted.

2.7 Self-Organising Maps

Self-organising maps (SOMs) are a data visualisation technique [31] which reduces the di-

mension of data through the use of unsupervised artificial neural networks. This means that

during learning, only input data is given, without the need for presenting target data, that is,

without any external supervision. SOMs reduce data dimension by producing a map of usu-

ally 1 or 2 dimensions which plots the similarities of the data by grouping similar data items

together. Thus, the main advantages of SOMs are the possibility of visualising N dimensional

data in 2D and detecting similarities and degrees of similarity. Therefore, they can be used

as classification techniques, which is the case in this work. A toolbox for creating SOM has

been downloaded from [32].
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Identity and Expression Recognition

The present chapter is a detailed description of the work developed. With the purpose of

demonstrating that facial dynamics is a biometric, several procedures were developed as

attempts to overcome existing issues. Dynamic databases are necessary for testing the pro-

cedures created and thus, a description of all four databases used is given in section 3.7.

Throughout the present chapter, the databases are referred to as Database 1, 2, 3 and 4.

Database 4 has been created as part of the present work, in order to investigate whether

facial dynamics alone is an effective biometric. Each section of this chapter includes a de-

scription of the methods created, as well as the obtained results. A significant amount of

existing techniques are used, and some novelty is introduced in the combination of these dif-

ferent techniques. The different procedures presented in this section describe the evolution

of the work developed. In the first method, the first database was used and dynamic time

warping was performed for identity and expression classification. The methods that follow

try to overcome some disadvantages as is presented throughout this chapter. Firstly, an ex-

planation of the application of the different techniques to the case of facial dynamics is given,

with the aid of visual examples.

Active Shape Models

Each dynamic database comprises a set of facial expressions performed by one or more indi-

viduals. Each of these facial expressions is defined by a set of frames showing the individual’s

face. In this work, Active Shape Models (ASM), as introduced in section 2.1, are used for

automatically locating feature landmarks in each of these frames. Thus, each image of the

sequence becomes represented by a set of landmarks, i.e., its 2D coordinates. This kind of

representation of the faces encodes shape information since it gives the relative position of

the feature points in relation to each other.

13
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Two models are used in this work. The first model was constructed as part of the work

developed in [16], referred to as ASM 1, and contains 58 landmarks. It was created using

several frames from Database 1, which were manually landmarked and afterwards used for

training the ASM. The second model, ASM 2, was downloaded from [1], and contains 76

landmarks. This model uses the MUCT Face Database which consists of 3755 faces with

great diversity of lighting, age, and ethnicity. Figure 3.1 shows the feature points of each

model.

Figure 3.1: Feature points of ASM 1 (left) and ASM 2 (right) after fitting the face.

Volume Local Binary Patterns

Besides ASM, another facial descriptor has been used: Volume Local Binary Patterns (VLBP).

This is a texture descriptor since it uses the sequences of grey-scale images for computing

histograms, as described in subsection 2.2.2. Here, each face in each frame is detected, using

a software for locating faces, and aligned to a reference frame. A more detailed description

of this preprocessing step is given in section 3.4. Alignment of the faces is needed because

VLBP computes the codes considering the neighbourhood of each pixel, in sequential frames,

and thus translation, rotation and scale components must be removed. Figure 3.2 shows the

histogram resultant from applying VLBP to a sequence of an individual performing a facial

expression. It can be observed that the range of codes computed varies from 1 to over 16000,

and so each facial sequence becomes represented by a very long vector. This causes the pro-

cedures to be more computationally costly than when ASM are used. The main advantage is

that much more facial information is considered.

Optical Flow

When applied to faces, optical flow creates fields of vertical and horizontal velocities, as

explained in section 2.3, which provide a description of the facial motion. Figure 3.3 shows

the velocity vectors for each pixel, obtained from the grey-scale images. It can be observed
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Figure 3.2: Normalised histogram of the VLBP codes of a facial sequence.

that motion is present more significantly around the mouth and the eye region, as expected.

In this work, optical flow is applied to the facial sequences, using consecutive pairs of images.

From each pair of images, a field of velocity vectors is obtained, and thus each new sequence

becomes one frame smaller than the original one. Optical flow is used as a motion descriptor,

and so texture and shape information are removed. Analysis is done by applying VLBP to the

optical flow sequences, so that each sequence becomes represented by a vector (histogram).

Figure 3.3: Optical flow field (right image) computed using the two grey-scale images.

Principal Components Analysis

As introduced in section 2.4, PCA is used in this work as a dimension reduction technique.

Each shape, in this case, can be represented by a set of feature points, when ASM is used.

The parametric model obtained from PCA (equation 2.4) can be rewritten as

s ≈ s0 + Φp (3.1)

where Φ is the matrix of the n lead Eigenvectors. Inverting this equation, the set of Eigen-

coefficients for shape s can be extracted:

p ≈ ΦT (s− s0). (3.2)
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Each n-element vector p is now used for representing each face, instead of the coordinates

for all feature points. This representation of faces, or facial sequences, besides reducing the

spacial dimension, leads to noise removal and reduction of intrasubject variations, which

degrade the recognition performance. Figure 3.4 shows the first three Eigencoefficients of

each shape of the facial expression sequence, obtained after performing PCA holding 97%

variance.

Figure 3.4: Surprise dynamics of an individual plotted in the subspace spanned by the first three
Eigencoefficients.

Dynamic Time Warping

Creating references from a set of existing sequences or constructing tensors always require

the facial expression sequences to have the same number of frames, i.e., to have the same

duration. However, even for the same individual, it is not easy nor expected that he or

she performs a facial expression twice in exactly the same time interval. This aggravates

for the case of many individuals performing several facial expressions, where very different

durations are obtained. The solution for this issue is using Dynamic Time Warping (DTW)

between each pair of sequences so that two warped sequences are obtained, i.e., the resulting

sequences have the same duration. Since DTW takes into account not only euclidean distances

between points of the sequences but also their evolution (see section 2.5), it is only logical to

perform DTW between repetitions of the same facial expression, in this case. The left and

right images in figure 3.5 show two original sequences of a subject performing the happiness

dynamics and the warped sequences, respectively. The same sequences are plotted with the

same colour. The original sequences have two different durations (90 and 50 frames) and the

warped sequences have the same duration (96 frames). It can be observed that the warped

sequences maintain the same pattern, with the difference that they are extended, by repeating

points, which represent frames, so that they become more similar to the other sequence. It is

expected that, for warped sequences, the frames with the same index correspond to the same
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instant in both sequences. For example, if the 50th frame in one sequence corresponds to the

apex, which is the most expressive frame, of the facial sequence, the 50th frame in the other

sequence should correspond to the apex as well. This can be observed in figure 3.5, because

the points relative to the apex in the red sequence present more repetitions than the initial

ones. Figure 3.6 shows the warping path between the two sequences. The pictures indicate

the beginning and ending frames of the facial expression, as well as the most expressive one.

It can be seen that in both sequences, the expression starts in the 20th frame, leading to a

unitary slope because very few frames are repeated. Although the apex zone of sequence 1

lasts for about 40 frames, in sequence 2 it lasts only 15 frames. Thus, a null slope is obtained

in some segments between frames 30 and 70 of sequence 1.

Figure 3.5: Warped sequences (right image) resultant from applying DTW to the sequences in
the left image.

Figure 3.6: Warping path between the two sequences.
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Tensors

A database with a significant amount of individuals may comprise a great variation of textures

(due to different ethnicity), lighting conditions, poses, genders, facial expressions, etc. It is

often desirable to analyse only a certain characteristic (e.g. the gender) in the presence of vari-

ations of other characteristics. Thus, a technique for separating the different characteristics is

of great use, so that only the target one is considered. Tensor analysis can be used for solving

this problem, since it provides a separation of the data in subspaces representative of each

characteristic. In this work, identity and facial expressions are the two characteristics sub-

ject to analysis and thus, tensors are used in most of the procedures developed. Considering

databases comprising repetitions of the facial expressions by the same individual, or com-

prising great lighting or appearance variations, the goal is to perform identity and expression

recognition under these conditions. As described in section 2.6, tensors are multidimensional

arrays of data constructed so that each dimension comprises one characteristic. For exam-

ple, if the J facial expression sequences performed by I individuals are sets of L points in

a P -dimensional space, which correspond to L frames, a 4D-tensor T ∈ RI×J×P×L which

represents the entire data set may be constructed. Decomposing this tensor as explained in

subsection 2.6.3 leads to the mode-n product

T = Z ×1 Upeople ×2 Uexpressions ×3 Ueigencoef ×4 Ut (3.3)

where Z is the core tensor, and Ui, i = {people, expressions, eigencoef, t} are the subspace

matrices which represent each of the characteristics. This decomposition provides a separation

of the data so that only the relevant features are present in each of the subspaces. In this

work, the subspace matrices Upeople and Uexpressions are used for performing identity and

expression recognition, because their row vectors span the invariance of the characteristic in

question across all the other characteristics. Depending on which facial descriptor is used

(VLBP or ASM), 3D or 4D tensors are constructed. However, they have in common the first

two dimensions which always represent the people in the database and the facial expressions.

Figure 3.7 shows a visualisation of the 4D tensor previously described.

Self Organising Maps

Self Organising Maps (SOM) are a good way for representing multi-dimensional data as 2D

maps. They are useful in the case where a significant amount of training data is available. In

this case, not only full facial sequences, containing the onset-apex-offset, are used, but also

streams of facial expressions. In this work, a facial expression sequence refers to a complete

sequence containing the onset, apex and offset stages. A stream refers to part of a sequence,

i.e., a set of sequential frames obtained from that sequence. The usage of streams leads to
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Figure 3.7: Visualisation of a 4D tensor.

a great amount of training data, and thus SOM are used for visualisation and classification.

To each training stream, a label is assigned identifying the corresponding facial expression.

SOM organises the data and extracts the similarities for creating a map where adjacent cells

have the same label. Figure 3.8 shows the labels of the cells of a SOM which represents the

six facial expressions (right image). The left image is a distance matrix of the SOM. It can

be observed that the areas in blue, which correspond to smaller distances, cluster together

and are located in the same regions of the SOM as the labels. The clusters are separated by

cells which correspond to longer distances.

Figure 3.8: Distance matrix of the SOM (left image) and corresponding labels (right image).

Frame Subtraction

Since the main objective of this work is to demonstrate that facial dynamics is a biometric,

experiments are performed not only using the original data sets but also modified data sets

which attempt to eliminate or reduce the component related to facial shape and texture by

subtracting the neutral face of each individual from every frame in the database. A similar

procedure using grey scale images is used in [12], with the purpose of minimising undesirable

variances.

Figure 3.9 shows the result of fitting ASM 1 to a neutral face (left image) and to a frame in the

apex of a facial expression (middle image), after alignment to a reference frame. The image

on the right shows the outcome of subtracting these two images, where it can be observed
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that the shape information is completely removed. In this case, subtraction is performed

between the corresponding feature points in each frame. Analogously, figure 3.10 shows the

pixel by pixel subtraction of the grey levels of the two left images, in the right image. Most

of the texture information is removed in this case.

Figure 3.9: Subtraction of the left and middle set of landmarks, resulting in the set of points in
the right image.

Figure 3.10: Subtraction of the left and middle grey-scale images, resulting in the right image.

Note: In the following procedures, all the experiments for both identity and expression

recognition were performed with the same query sequences. This means that even if the

person is wrongly identified, expression recognition is performed using the correct individual.

In a real system, this would not be the case. However, for testing purposes, this method was

adopted.

3.1 Dynamic Time Warped Shape Sequences

Based on the work developed in [16], where dynamic information is used for recognition, a

new method was created with the same objective: recognise identity and facial expressions

using facial motion. This procedure uses the feature points obtained from ASMs (see section

2.1), which fit the face in each frame of the database. Note that a database with repetitions

of the same expression by the same individuals is required and thus, this procedure has only

been tested with Database 1, which was constructed as part of the work developed in [16].

Initially, each frame of each sequence is represented by a set of landmarks, which can be
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interpreted as a point in a high dimensional space. Thus, a preprocessing step is required for

reducing the spacial dimension. In order to remove scale, translation and rotation compo-

nents, all the frames are aligned to a reference frame using a Generalised Procrustes Analysis

(GPA). The dimension of the space in which the faces are represented is reduced by using a

Principal Components Analysis (PCA), as introduced in section 2.4. Instead of being rep-

resented by a point in a 2N -dimensional space, where N is the number of landmarks, each

shape (face) of the database is now represented by a point in a p-dimensional space, where p is

the number of Eigenvectors that hold a user defined variance, in this case 97%. As mentioned

in the beginning of this chapter, in order to remove shape components, each frame of the

database is subtracted by the neutral face for each person, so that only dynamic components

are present and each set of landmarks represents the motion relative to the neutral face. Ex-

periments are performed for both the original and the subtracted data sets. The idea in which

this method is based consists on comparing a query sequence with reference sequences so that

identity and expression recognition are performed, sequentially. In [19] a similar procedure is

used, with the difference that 3D shapes are used and tests are performed using databases of

people uttering words.

The reference sequences for identity recognition are created as follows:

1. PCA (with 98 % variance) is performed on a new set constructed from r− 1 out of the

r repetitions for each person and expression, and the mapping is determined;

2. For each person and repetition, all the expression sequences are concatenated in the

same order, resulting in (r − 1)Np longer sequences (Fig. 3.11), where Np is the

number of people in the data set;

3. Dynamic Time Warping (see section 2.5) is performed between each of these new se-

quences and a reference sequence, resulting in warped sequences with a fixed length,

which equals len×Ne, where len is the user defined length of each expression sequence

(80 frames in this case, corresponding to approximately 3 seconds for performing a full

facial expression), and Ne is the number of expressions in the database;

4. For each person, the mean sequence is computed using the r − 1 repetitions, using the

arithmetic mean for each point of the sequence;

5. Lastly, for future computational simplicity, each reference for identity recognition -

referred to as refp, p = 1, 2, . . . , Np - is the result of sampling len elements of the

respective mean sequences. The result is Np new sequences of length len.

The reference sequences for expression recognition are created as follows:
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1. PCA (with 99 % variance) is performed in each of the Np new sets, which consist of

r − 1 repetitions of every expression, one set per individual (fig. 3.12). The result is

Np new mappings which will be used during testing;

2. Each of these new sequences is warped (by performing DTW) with a reference sequence

(one of the repetitions), resulting in sequences of length len;

3. The mean sequence of the three repetitions of each expression is the reference for expres-

sion recognition - referred to as refEpe, p = 1, 2, . . . , Np; e = 1, 2, . . . , Ne. Therefore,

for each person in the database there are Ne references.

As mentioned in section 2.5, DTW can be used as a classifier since it gives a measure of the

similarity between two signals. For both identity and expression recognition, the assumption

is that “closer” signals (frame sequences) correspond to the same person and facial expression,

respectively. It is possible to use this method in this case because the sequences obtained after

PCA comprise only the principal components and thus they are mapped in different locations

in the p-dimensional space. It has been observed that similar sequences (repetitions of the

same expression by the same individual) are mapped to similar locations, allowing distance

measures to be used. This can be seen in Figure 3.11, which depicts three repetitions of the

concatenated sequences for each individual for the original data set (left) and the subtracted

data set (right). As expected, it can also be observed that the sequences of the subtracted

data set all have a common point near the origin of the referential system. This is due to

the fact that neutral faces in each sequence are transformed to zero in the p-dimensional

space. However more evident in the case where the original database is used, in both cases

it can be observed that different tones of the same colour (same person) are “closer” to each

other than to other colours, which represent other individuals. Thus, during the testing

phase, each query sequence, to which only one individual and expression are associated, is

initially warped with refp, p = 1, 2, . . . , Np and Np measures (distances) are determined.

The reference sequence that yields the minimum distance (e.g. ref2) belongs to the same

individual as the query sequence. Expression recognition is analogous to this procedure, but

only the expression sequences associated with the person identified (refE2e, e = 1, 2, . . . , Ne)

are used for distance measuring. Figure 3.12 shows the expression sequences associated with

each individual of the database as a result of PCA. It can be observed that all sequences

(represented by different colours) start and end at a common point, which corresponds to the

neutral face. The point of each sequence which is located farther from this common point

corresponds to the apex of each facial expression.
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Figure 3.11: 3D representation of the sequences of concatenated expressions for each person
using the original data set (left) and the subtracted data set (right).

Figure 3.12: 3D representations of the different expressions performed by each individual. Each
colour corresponds to one facial expression.

3.1.1 Experimental Results

This procedure was tested with Database 1 and the results for identity recognition are shown

in table 3.1. As in [16], the method is trained with 3 repetitions of each expression and person

and tested with the remaining one, allowing direct comparison to be made. As expected,

higher recognition rates are obtained when the original data set is used. From Fig. 3.11 it is

clear that greater separation is obtained using the original data set and thus, it is easier to

identify the individual to which a certain query sequence corresponds. However, even without

shape information (when the subtracted data set is used), it is possible to obtain good results

in identity recognition. Moreover, despite resulting in worse fits to the faces, better results

were obtained using ASM 2 due to the fact that this model comprises more landmarks than

ASM 1, providing more shape and dynamic cues. When shape information is removed, the

existence of more dynamic information results in significantly better recognition rates. Table

3.2 shows the results of expression recognition for each person in the database. General

analysis demonstrates that the existence of shape information results in better recognition

results. In expression recognition, using ASM 2 leads to worse results due to the fact that

the fitting to the faces is not perfect. In this case, greater precision is needed and thus flawed
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Subtraction ASM Average identity recognition
No 1 100%
No 2 100%
Yes 1 80.21%
Yes 2 97.92%

Table 3.1: Overall identity recognition rates for different input parameters.

Individual 1 Individual 2 Individual 3 Individual 4 Overall
Subt. ASM Exp.Recog. Exp.Recog. Exp.Recog. Exp.Recog. Rate
No 1 79.17% 87.50% 95.83% 95.83% 89.58%
No 2 75.00% 91.67% 95.83% 87.50% 87.50%
Yes 1 66.67% 75.00% 91.67% 83.33% 79.17%
Yes 2 41.67% 66.67% 95.83% 62.50% 67.71%

Table 3.2: Results on expression recognition for each individual in the database.

fittings result in errors. These errors are more evident when shape information is removed,

leading to worse recognition results. Note that all the results presented were obtained by

testing this method with each of the four repetitions of every expression, after training with

the remaining three repetitions. These are average results and not the best results obtained.

The results obtained with this method can be compared to the results obtained in [16].

Considering identity recognition using the original data set and ASM 1, 100% of the sequences

were classified correctly with the present method. In [16], an identity recognition rate of

96.88% was obtained, which is a lower value. Moreover, an overall expression recognition

rate of 89.58% was obtained with this method, which is a result about 4% better than the

one obtained in [16]. Thus, the present method leads to overall better recognition rates,

when compared to the existing method. Despite providing good results, the present method

has the disadvantage that Ne × Np reference sequences have to be created for performing

both identity and expression recognition. Moreover, performing DTW is computationally

expensive when using data sets with a higher number of individuals. In order to try and solve

these issues, a new procedure is presented using the idea that each individual and expression

can be represented as a single point, increasing the separation between them, and simple

euclidean distances can be used for classification.

3.2 Tensor Analysis of Shape Sequences

Previous work has shown that tensors can be used for analysing facial dynamics since their

decomposition provides the separation of the different components in orthogonal subspaces [2].

Each subspace is represented by a matrix, whose row vectors span the invariance of a certain

characteristic (identity, facial expression, etc.) across the remaining characteristics. Thus,

each of these vectors can be interpreted as a point in a v-dimensional space, where v is the
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length of the vector. Since each of these points represents one element of the corresponding

subspace, tensor analysis can be used to solve the aforementioned issue. As in the first

procedure, a preprocessing step is performed identically in this procedure, with the only

difference that the variance of the PCA is 99% so that more principal components are used.

Afterwards, for each person and facial expression, DTW is performed in r − 1 repetitions,

where r is the total number of repetitions, with a reference sequence, which is one of them.

The outcome is r − 1 new sequences with a fixed length from which a mean sequence is

computed. Lastly, these newly determined Np × Ne sequences are used for constructing a

4D tensor.

Each frame of each sequence is represented by a point in a d-dimensional space, where d is the

dimension obtained from PCA, and each sequence contains Nf frames. To define a fourth-

order tensor which represents the entire data set, the sequences are organised so that identity,

facial expressions, principal components and sequence length (frame order) are encoded in

orthogonal dimensions. More specifically, for a 4D tensor D ∈ RI×J×K×L , I is the number

of people in the data set, J is the number of facial expressions (in this case 6), K is equal

to d, and L equals Nf . Using HOSVD, the tensor D is expressed as in equation 2.13, that

is, as the mode-n product of a core tensor, Z, and 4 orthogonal subspace matrices, Upeople,

Uexpressions, Upc, and Ulength:

D = Z ×1 Upeople ×2 Uexpressions ×3 Upc ×4 Ulength. (3.4)

For the people subspace matrix Upeople, each row vector represents one person and the row

vectors span the space of the people from the database across different expressions, principal

components and sequence frames. The expression subspace matrix Uexpressions row vectors

span the space of facial expressions and describe the invariance across different people and

shape and temporal information. In this work, the main focus of interest are these two

subspace matrices since they encode the information which is relevant for analysis.

In this method, testing is performed as follows:

Tensors Bexp and Bper are computed by

Bexp = Z ×2 Uexpressions ×3 Upc ×4 Ulength. (3.5)

Bper = Z ×1 Upeople ×3 Upc ×4 Ulength. (3.6)

For every query sequence:

1. DTW with a reference sequence is performed, resulting in a sequence with length Nf ;

2. A 4D-tensor, Dnew, of size 1× 1× d×Nf , is constructed using the new sequence;
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3. Dnew is flattened along dimension 1, resulting in a matrix of size 1× d ·Nf ;

4. For every facial expression, the corresponding subtensor (Bexpi, i = 1, . . . Ne) is flattened

along dimension 1;

5. These two new matrices are multiplied using the pseudo-inverse (snew = Dnew(1)[Bexpi(1)]
†),

resulting in a vector which represents the projection of the new sequence in the people

subspace (Fig. 3.13) ;

6. The minimum euclidean distance between these vectors (projections) and the row vec-

tors of the people subspace matrix provides the identity recognition;

7. Suppose that individual idv was recognised. A similar procedure is performed for ex-

pression recognition, using the matrix obtained from flattening tensor Bperidv;

8. The shortest distance between the vector obtained (sequence projected in the expres-

sion subspace - Fig. 3.13) and the row vectors of the expression matrix provides the

expression recognition.

The left and right images of figure 3.13 show the 2D representations of the row vectors of

the identity and expression subspace matrices, respectively, as filled circles. Also, all the

query sequences are projected into the people and facial expression subspaces (Fig. 3.13),

represented as asterisks. Different people and facial expressions are represented by different

colours and it can be observed that sequences representing the same element (and thus have

the same colour) cluster together. This property allows distance between points to be a

classifier.

Figure 3.13: 2D representation of the points representing each person (left) and expression
(right), and the projections of the test sequences.
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Subtraction ASM Average identity recognition
No 1 100%
No 2 100%
Yes 1 90.62%
Yes 2 96.88%

Table 3.3: Overall identity recognition rates for different input parameters.

Individual 1 Individual 2 Individual 3 Individual 4 Overall
Subt. ASM Exp.Recog. Exp.Recog. Exp.Recog. Exp.Recog. Rate
No 1 75.00% 100% 95.83% 91.67% 90.63%
No 2 70.83% 95.83% 91.67% 87.50% 86.46%
Yes 1 70.83% 95.83% 95.83% 100% 90.63%
Yes 2 66.67% 100% 87.50% 83.33% 84.38%

Table 3.4: Results on expression recognition for each individual in the database.

3.2.1 Experimental Results

Using this procedure, results for identity and expression recognition are shown in tables 3.3

and 3.4, respectively. Tests were performed in identical conditions as in section 3.1. General

comparison between this and the previous procedure shows that overall results improved. In

identity recognition, an improvement of 10% has been obtained when using ASM 1 and the

subtracted database. Expression recognition shows that results are coherent. As an example,

individual 1 produced the worst results in both procedures. In addition, recognition rates

increased significantly when using the subtracted data set: about 10% for ASM 1 and 17%

for ASM 2. This leads to the conclusion that tensor analysis provides better separation be-

tween individuals and facial expressions than PCA in conjunction with DTW. It can also be

observed that similar results are obtained in expression recognition when using the original or

the subtracted data sets. This demonstrates that it is possible to recognise correctly the facial

expression when using only dynamic cues, which was not evident with the previous procedure.

The results obtained show that, despite being computationally simple and inexpensive, this

method is efficient. Comparing to the previous method, this one does not require the indi-

vidual computation of a reference for each person and facial expression, since the separation

of subspaces solves this problem. Tensor analysis is further explored throughout this work.

Up to this point, it has been shown that facial dynamics is indeed a proper biometric. How-

ever, since only a small database has been used, the conclusion is limited to a small number

of individuals. Thus, it is necessary to perform experiments with larger data sets, which are

more representative of real situations. Moreover, is it not easy to have access to databases

with multiple repetitions of each facial expression. The next procedures are an attempt to

overcome these issues.
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3.3 Tensor Analysis of Shape Streams

Previous work [2] has shown that different streams of a certain facial expression, which are

short sequences representing part of the facial expression, have similarities in the sense that

when represented in the same referential, they cluster together. These streams are constructed

by sampling each emotion sequence using a windowing technique such that multiple samples

of each sequence are ascertained. Using this technique, a database with a single sequence

of each facial expression performed by each individual can be used since both training and

testing samples can be obtained in significant amounts. Moreover, some databases do not

include the complete facial expressions (onset-apex-offset), making this technique advanta-

geous because only parts of the facial expressions are needed. The procedure presented in

this section makes use of this technique, being this the main difference when compared to the

previous procedure. Since the streams all have the same length, it is not necessary to apply

DTW. Besides using only euclidean distances for classification, Self Organising Maps (SOM)

are also used in the testing phase, as in [2]. The present procedure is, in some aspects, similar

to [2]. However, the main differences include the usage of techniques for tracking features,

instead of ASMs, and the fact that the method is not used for identity recognition.

In this case, since each training sequence (a stream) represents a different part of the facial

expression, it is not logical to construct the tensor using the mean sequence of the training

sequences. Thus, here the 4D-tensor is defined as D ∈ RI×(J ·R)×K×L where R is the number

of streams of each facial expression used for training and I, J,K, L have the same meaning

as in section 3.2. Based on the knowledge that streams of the same facial expression cluster

together, two classification methods are applied using the row vectors of the facial expression

subspace matrix obtained from HOSVD of D. One method creates a SOM using these vec-

tors and the query stream is projected to the map, allowing label comparison to be made.

Figure 3.14 illustrates the SOM created using Database 1, where Ei, i = 1, . . . , Ne represent

the 6 basic expressions. It is clear that, for different people, streams of the same facial ex-

pression are located in adjacent cells in the SOM, so that 2D spacial location can be used

for classification. The other method uses only euclidean distances to the mean point of each

cluster of row vectors, as illustrated in Fig. 3.15. Each dot represents a row vector and each

cross represents the mean point. The same facial expression performed twice by the same

individual, or by different individuals, may have very different durations, depending on the

velocity with which it is done. Thus, one stream from each sequence may not only represent

a different part of the facial expression, but may also represent a different percentage of the

facial expression. Despite these facts, it has been observed that, in fact, facial streams cluster
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together, which is of great relevance in this work.

Figure 3.14: SOM representing the six basic facial expressions.

Figure 3.15: 2D representation of facial expression streams as well as the mean point.

3.3.1 Experimental Results

This new procedure is tested with databases 1 and 2, making use of its advantages. These

are very different databases, and so allow a good evaluation of the method.

3.3.1.1 Database 1

Table 3.5 shows the overall identity recognition rates for Database 1 under the same conditions

as in sections 3.1 and 3.2. The training streams are sampled from three out of the four

repetitions of each facial expression and individual, and the testing stream is determined

using the central part of the remaining repetition, so that more dynamic information is
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Subtraction ASM Average identity recognition
No 1 100%
No 2 93.75%
Yes 1 90.63%
Yes 2 87.50%

Table 3.5: Overall identity recognition rates for different input parameters.

present, and the query sequence is unseen (not part of the training set). The results were

obtained using a window size of 50 frames and a step size of 5 frames. As in the previous

procedures, using shape information (original data set) provides better recognition results.

However, in this case, using ASM 2 leads to poorer results (an average difference of about

8%), indicating that the misfits to the faces are more significant. This can be explained by

the fact that using overlapping streams results in poor fits being present in more than one

repetition.

Tables 3.6 and 3.7 show the results for expression recognition for each individual, using the two

classification methods: distances and SOM, respectively. As in section 3.2, it can be observed

that similar results are obtained either using using shape information or not. Slightly better

results are obtained using SOM and it can be seen that the results are coherent in the sense

that similar rates are obtained for the same people. This method leads to overall worse

rates than the method in the previous section, with the difference ranging between 6% and

9%. The reason is that only a short part of each facial expression for each individual is

shown during testing, increasing the ambiguity, especially if this part includes frames with

the neutral expression. However, the results obtained are similar to the rates in [2].

Analysis of the influence of stream length and step size for both the original and the subtracted

data sets is shown in table 3.8. ASM 1 was used in these experiments. The table on the

left shows the results for the subtracted data set. Under the same conditions, results for

the original data set are shown in the table on the right. General analysis demonstrates

that using longer streams leads to better results, which can be explained by the fact that

these sequences include more dynamic information, necessary for the recognition of facial

expressions, as opposed to short sequences which may only contain neutral faces. When

shorter streams are used, it is advantageous to have small steps because it increases the

number of training sequences. However, if the step is too small, there may exist more streams

with a considerable amount of neutral faces, which are misleading sequences. Moreover, better

expression recognition results are obtained with the subtracted data set. This can lead to

the conclusion that better separation is obtained in this case due to the fact that subtracted

sequences of the same expression performed by different individuals are more similar, having

less interpersonal differences.



Chapter 3. Identity and Expression Recognition 31

Individual 1 Individual 2 Individual 3 Individual 4 Overall
Subt. ASM Exp.Recog. Exp.Recog. Exp.Recog. Exp.Recog. Rate
No 1 54.17% 95.83% 70.83% 91.67% 78.12%
No 2 62.50% 95.83% 79.17% 87.50% 81.25%
Yes 1 66.67% 95.83% 66.67% 91.67% 80.21%
Yes 2 62.50% 95.83% 75.00% 79.17% 78.13%

Table 3.6: Results on expression recognition for each individual in the database using distances.

Individual 1 Individual 2 Individual 3 Individual 4 Overall
Subt. ASM Exp.Recog. Exp.Recog. Exp.Recog. Exp.Recog. Rate
No 1 66.67% 91.67% 79.17% 87.50% 81.25%
No 2 62.50% 95.83% 75.00% 87.50% 80.21%
Yes 1 79.17% 91.67% 75.00% 91.67% 84.38%
Yes 2 54.17% 95.83% 75.00% 83.33% 77.08%

Table 3.7: Results on expression recognition for each individual in the database using SOM.

Step
1 5 10 15

Length

20 82.29% 71.88% 68.75% 57.29%
30 70.83% 78.13% 82.29% 77.08%
40 79.17% 83.33% 83.33% 80.21%
50 82.29% 80.21% 85.42% 86.46%

Step
1 5 10 15

Length

20 80.21% 75.00% 68.75% 54.17%
30 73.96% 78.12% 79.17% 69.79%
40 76.04% 77.08% 80.21% 82.29%
50 78.12% 78.12% 82.29% 84.38%

Table 3.8: Results of overall expression recognition for different stream lengths and steps, and
using both the subtracted (left) and the original (right) databases.

3.3.1.2 Database 2

This procedure was also performed using ASM 2, and Database 2, which is a database with

no repetitions. Thus, using each sequence, a set of streams is constructed and all but the

central one are used for training. Testing is done with the central stream, which is an unseen

sequence but can have a percentage of frames in common with streams from the training

data set. Table 3.9 shows the results for identity and expression recognition (using two

classification methods) for different stream lengths and step sizes. In each column, the values

on the left were obtained using the original data set and the values on the right using the

subtracted one. The values between parenthesis in the column with the step sizes indicate

the maximum percentage of common frames between the query sequence and the training

sequences. Thus, as expected, a higher percentage leads to better recognition rates for both

identity and expression, since part of the query sequence is present in the training set. In

this case, since there is only one sequence per person and expression, longer streams lead to

a small amount of training samples, reducing identity recognition rates. With a reasonable

amount of training samples, even without overlapping (or a very short percentage), it is

possible to obtain good recognition results. The fact that slightly better recognition results

can be obtained with the subtracted data set can be justified by the interpersonal differences,

as mentioned above. It can also be observed that large step sizes lead to worse results when
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Length Step % Id. Recog. % Exp. Recog. % Exp. Recog. (SOM)
14 (44%) 89.99 / 91.95 93.68 / 96.55 94.83 / 94.83

25 22 (12%) 85.63 / 90.80 90.23 / 91.95 86.78 / 86.78
25 (0%) 85.63 / 84.48 83.91 / 86.78 68.97 / 62.07
10 (71%) 91.95 / 90.80 94.25 / 94.25 95.40 / 94.83

35 20 (43%) 86.21 / 84.48 86.21 / 87.36 86.21 / 86.78
30 (14%) 77.01 / 77.01 79.31 / 81.03 44.25 / 73.56
5 (89%) 94.83 / 94.25 96.55 / 96.55 96.55 / 96.55

45 15 (67%) 86.21 / 86.21 85.06 / 87.36 56.87 / 86.78
24 (47%) 79.31 / 78.16 84.48 / 85.63 82.76 / 66.67

Table 3.9: Results of overall identity and expression recognition for different stream lengths
and steps, and using both the original (left values) and the subtracted (right values) databases.
The values between parenthesis indicate the maximum percentage of common frames between the

query sequence and the training sequences.

using classification with SOM than with distance measures. A small amount of training

samples can be the reason to this, since not enough samples are available for constructing the

maps properly.

Good recognition results can be obtained using this procedure, even with databases which

comprise many individuals. Thus, this is an efficient and useful method, with many possible

applications nowadays. However, the usage of ASM 2 produces misleading results and this

procedure requires an ASM trained with images manually landmarked. Attempting to create

a method which uses more facial information, such as texture cues, the following procedure

uses grey images of the face and thus, does not require an ASM fully trained.

3.4 Tensor Analysis of Texture Streams

The main idea of this procedure is identical to the previous one, having the difference that

instead of using ASMs for describing the faces, here each face is represented by a grey scale

image of 40×40 pixels. Similarly to the previous method, here image subtraction is performed,

i.e., for each pixel, its grey levels are subtracted and a new image is created. This subtraction

attempts to remove or reduce texture and shape information. Figure 3.16 shows sampled

frames of a subtracted sequence, where it can be seen that only the areas which exhibit

greater dynamism are depicted. For creating the 40× 40-pixel grey scale images, a software

downloaded from [1] was used. This software locates faces in images, and creates a log with

the face location, as well as the position of each eye. Since it “cuts” the images keeping the

same area of the face, this algorithm removes scale and translation components. Using the

positions of the eyes, it is possible to remove rotation components in relation to a reference

face. Errors may occur if the eyes are totally or partially closed because the positions may

be wrongly determined. Figure 3.16 shows an example of the outcome of this procedure.

It can be seen that the different frames of the same sequence are properly aligned. In this
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Figure 3.16: 40×40-pixel grey scale images sampled from a sequence of an individual performing
a facial expression (happiness). The top and bottom rows show frames from the original and the

subtracted database, respectively.

method, not only shape and dynamic information is used, but also texture information.

VLBP is the used texture descriptor so that each stream is represented by an histogram of

grey levels. Therefore, both texture and temporal information are encoded in this histogram,

which is a vector containing the occurrences of each grey level. In [22], VLBP is used for

face recognition. However, the method does not use tensor analysis, making the present

procedure considerably different. This method can be considered innovative since no other

method makes use of VLBP as descriptors for the construction of tensors. Each stream is

created as follows:

1. Each frame of the sequence is divided into M ×N non-overlapping blocks;

2. For each bloc, a volume with the depth equal to the stream length is defined;

3. For each volume, VLBP, as defined in subsection 2.2.2, is performed;

4. Each stream is created by concatenating the M × N histograms obtained: for every

block in the same set of frames, a volume is defined.

Afterwards, all the training streams are used for computing PCA with 99% variance, so that

dimensionality reduction is performed. This step is needed because the histograms contain

tens of thousands of values, making this procedure computationally expensive. The resulting

streams are used for constructing the tensor. Here, since the histograms encode texture and

temporal information, 3D-tensors were created, so that identity, facial expressions and VLBP

codes are represented in orthogonal subspaces. More specifically, for a 3D tensor D ∈ RI×J×K ,

I is the number of people in the data set, J is the number of facial expressions (in this case

it is 6) multiplied by the number of repetitions of each expression and K is the dimension of

each facial sequence, i.e., the dimension of the vector obtained after the PCA of the histogram

resultant from the VLBP method. Using HOSVD, tensor D is expressed as in equation 2.13,

that is, as the mode-n product of a core tensor, Z, and 3 orthogonal subspace matrices,

Upeople, Uexpressions and UhistV ec:

D = Z ×1 Upeople ×2 Uexpressions ×3 UhistV ec. (3.7)
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UhistV ec is the feature histogram subspace matrix, whose row vectors span the invariance of

the texture and temporal information across the different people in the database and facial

expression repetitions. For the people subspace matrix Upeople, each row vector represents one

person and the row vectors span the space of the people from the database across different

expressions and feature histograms. The expression subspace matrix Uexpressions row vectors

span the space of facial expressions and describe the invariance across different people and

texture and temporal information. A 2D representation of the row vectors of Uexpressions is

depicted in Fig. 3.17. The classification method computes the distances to the mean of the

row vectors (marked in Fig. 3.17 with crosses). This is the only classification method used

because SOM did not produce significantly better results. The current procedure is tested

with all the databases available, since there is not the need for specific training, as opposed to

the case when ASMs are used. The following subsections present the results of the different

tests.

3.4.1 Experimental Results

In the following experiments, VLBP with L = 2, P = 4, R = 1 has been used. This means

that the neighbourhood of each pixel is defined considering 4 equally spaced pixels on a circle

of radius 1 in the present frame (frame t) and 2 pixels in the frames t − 2 and t + 2. This

procedure is tested with all four databases.

3.4.1.1 Database 1

Using Database 1, a set of experiments, identical to the ones described in the previous section,

were conducted. Fixing the number of blocks in 5× 4, and varying stream lengths and step

sizes, the obtained results are shown in table 3.10. Using the original data set, for every

stream length and step size, a 100% identity recognition rate was obtained. For the subtracted

data set, high identity recognition rates were obtained (table on the left), demonstrating the

efficiency of this method. In relation to the identity, higher separation is obtained if texture

information is used, as expected. Thus, higher recognition rates are obtained in this case.

The previous hypothesis that interpersonal differences cause expression recognition rates to

decrease can be confirmed with this experiment since the results (shown in the middle and

right tables) are better when the subtracted data set is used, for most of the stream lengths and

step sizes. In order to evaluate the effect of the number of blocks used, with a combination

of stream length and step size of 40 frames and 5 frames, respectively, results are shown in

table 3.11. In theory, using more blocks leads to a more detailed description of the faces since

the grey level histograms are created using smaller parts of the face. In practice, this can be

confirmed by analysing the results which show that higher identity and expression recognition
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Figure 3.17: 2D representation of facial expression streams as well as the mean point.

Length
40 50

Step
5 98.96% 97.92%
10 98.96% 97.92%
15 98.96% 97.92%

Length
40 50

Step
5 89.58% 89.58%
10 89.58% 89.58%
15 89.58% 89.58%

Length
40 50

Step
5 86.46% 87.50%
10 90.62% 87.50%
15 87.50% 87.50%

Table 3.10: Results of overall identity (table on the left) and expression (tables in the middle
and on the right) recognition for different stream lengths and steps, and using both the subtracted

(left and middle) and the original (right) databases. 5× 4 blocks were used.

Subtracted DB Original DB
Blocks Identity Recog. Expression Recog. Identity Recog. Expression Recog.

1x1 76.04% 64.58% 89.58% 62.50%
3x2 91.67% 82.29% 100% 85.42%
3x3 94.79% 85.42% 100% 87.50%
5x4 98.96% 89.58% 100% 86.46%

Table 3.11: Recognition rates for different blocks sizes, using Database 1 with stream length 40
and step size 5 frames.

rates are obtained as the number of blocks increases. Comparing to the previous method, this

one produces significantly better results, due to the fact that much more facial information

is used. In identity recognition, an improvement of about 9% has been achieved, when using

the subtracted data set. Considering expression recognition, for both the original and the

subtracted data sets, improvement ranges from 3% to 10%. The main disadvantage is that

this procedure is computationally more expensive, so that using larger data sets with a great

number of repetitions for each facial expression may be highly time consuming, during the

training phase.
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Length Step % Identity Recog. % Expression Recog.
14 (44%) 100 / 100 100 / 100

25 22 (12%) 100 / 100 91.38 / 99.43
25 (0%) 98.28 / 98.38 83.91 / 97.13
10 (71%) 100 / 100 100 / 100

35 20 (43%) 100 / 99.43 99.43 / 98.85
30 (14%) 98.85 / 98.85 88.51 / 94.25
5 (89%) 100 / 100 100 / 100

45 15 (67%) 100 / 100 100 / 100
24 (47%) 100 / 100 100 / 97.70

Table 3.12: Results of overall identity and expression recognition for different stream lengths
and steps, and using both the original (left values) and the subtracted (right values) databases.
3 × 2 blocks were used. The values between parenthesis indicate the maximum percentage of

common frames between the query sequence and the training sequences.

Subtracted DB Original DB
Blocks Identity Recog. Expression Recog. Identity Recog. Expression Recog.

1x1 65.51% 83.91% 60.34% 49.43%
3x2 98.28% 97.13% 98.28% 83.91%
3x3 98.85% 97.70% 98.28% 89.08%
5x4 97.70% 98.28% 98.85% 93.68%

Table 3.13: Recognition rates for different blocks sizes, using Database 2 with stream length 25
and step size 25.

3.4.1.2 Database 2

Experiments conducted with Database 2 allow the previous hypothesis to be corroborated.

The conditions in which the experiments were performed are the same as in the previous

section, with the same database. General comparison shows that better results are obtained

in this case (tables 3.12 and 3.13). Considering identity recognition, an improvement of up

to 20% has been obtained, since using a significant number of blocks with this method, leads

to identity recognition rates varying from 98% to 100%, as shown in table 3.12. Expression

recognition rates also increased more than 10% in many cases, for both types of data sets.

Firstly, keeping the number of blocks constant (3×2), stream length and step size were varied.

Smaller steps, which correspond to higher percentages of common frames between training

and testing sequences (overlapping), lead to higher identity and expression recognition rates,

as already observed. In this case, even with very small or even non-existing overlapping, very

high expression recognition results are obtained. As observed in the previous experiment,

increasing the number of blocks leads to better recognition rates, for both identity and ex-

pression (table 3.13). It is clear that this method is significantly more efficient that the one

which uses ASMs as face descriptors. Considering only expression recognition, experiments

with Database 2 show that the difference between rates obtained with the subtracted and the

original data sets is higher than when using Database 1. This is due to the fact that larger

intersubject differences are present, resulting in worse expression recognition results when
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Subtracted DB Original DB
Blocks Length, Step Identity Recog. Expression Recog. Identity Recog. Expression Recog.

15,10 73.33% 86.67% 88.33% 80.00%
3x2 20,15 40.00% 55.00% 86.67% 33.00%

25,15 71.67% 75.00% 96.67% 61.67%
15,10 88.33% 96.67% 98.33% 95.00%

5x4 20,15 60.00% 73.33% 100% 58.33%
25,15 90.00% 95.00% 100% 80.00%

Table 3.14: Recognition rates for different blocks sizes, stream lengths and step sizes, using
Database 3.

using the original data set. This can be confirmed by observing figure 3.18, which depicts the

differences between expression recognition rates obtained with the subtracted and the original

data sets, as the number of individuals increases. A stream length and step size of 25 frames

was used, as well as 3× 2 blocks. Results clearly show that, as the number of people in the

database increases, the difference becomes larger, corroborating the hypothesis presented.

Figure 3.18: Difference between expression recognition rates obtained with the subtracted and
the original data sets, for increasing number of people in the database.

3.4.1.3 Database 3

As mentioned before, the software used for locating the faces may produce poor results in

certain conditions. In order to assure that the results obtained and previously presented are

not influenced by poor registration, experiments are performed with Database 3, which is a

registered database. Table 3.14 shows coherent results, since higher expression recognition

rates are obtained when using the subtracted data set. Moreover, a greater amount of blocks,

leads to better overall recognition results, as does a higher percentage of common frames

between query and training streams, as already concluded.
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3.4.1.4 Databases 1 and 4

Up to this point, it has been shown that facial dynamics is a proper biometric since good

recognition results can be obtained even when shape and texture components are partially

or totally removed. Theoretically, physical changes such as ageing, gaining weight, wearing

glasses, growing a beard, etc., do not affect this kind of biometric, being this the main

advantage and focus of this work. Thus, in order to test the efficacy of this procedure in the

presence of significant appearance changes, a new database was created, Database 4, in which

an individual performs the six basic expression, three times each. One of the repetitions is

performed with the normal appearance, another one is performed with a painted face, with

different colours, and, for the remaining one, the individual’s face is covered with foam. The

foam makes the individual almost unrecognisable, even for humans.

Experiments are performed using one sequence for every facial expression of each individual

of Database 1 and the sequences of Database 4 with the normal appearance. This set of

sequences is used for training, so that 5 individuals are considered. The remaining sequences

of Database 4 are used for testing. Since, in this case, it is desirable to assess the method

as a biometric, and not an expression recognition system, only identity recognition results

are shown. Figure 3.19 shows the 3D representations of the row vectors (filled circles) of

the people subspace matrix for the subtracted (left picture) and the original (right picture)

data sets, when using 40 frames as stream length, 20 frames as step size and one bloc. The

projection of the query streams for the painted face (crosses) and for the face with foam

(asterisks) are also depicted. Colours for the points relative to the query sequences indicate

the result obtained, each colour corresponds to one of the 5 individuals. Since the brown

circle is the target individual, it can be observed that for both data sets, streams relative

to the painted face are located closer to the target circle than the ones relative to the fame

with foam (note the scale of the graphics). This is explained by the fact that a greater

appearance change is present in the latter case, and so the streams are projected to farther

locations. Identity recognition results for different stream lengths and step sizes are shown

in tables 3.15 and 3.16. The first two tables (3.15) correspond to the sequences performed

with the painted face. It can be observed that even with the original data set, some streams

were correctly classified, which indicates that the subject is not completely unrecognisable.

However, as expected, much higher rates were obtained when using the subtracted data set

because the identification was performed by using only dynamic information. In this case,

very good recognition results were achieved, proving that facial dynamics is definitely a useful

biometric. For the sequences filmed with the face covered with foam, the results are shown in

table 3.16. In the case where the original data set is used, the significant change in appearance

leads to incorrect classification for all the query streams. Although the dynamic information
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Figure 3.19: 3D representation of row vectors of the people subspace matrix using the subtracted
data set (left) and the original data set (right). The projection of the query sequences is also shown.

Step
2 5 10 15 20

Length
30 83.33% 83.33% 66.67% 66.67% 83.33%
40 83.33% 83.33% 83.33% 83.33% 83.33%
50 83.33% 83.33% 83.33% 83.33% 83.33%

Step
2 5 10 15 20

Length
30 33.33% 33.33% 33.33% 33.33% 33.33%
40 33.33% 33.33% 33.33% 33.33% 33.33%
50 16.67% 16.67% 16.67% 16.67% 16.67%

Table 3.15: Results of overall identity recognition (painted face) for different stream lengths and
steps, and using both the subtracted (left) and the original (right) databases.

is present, the difference in appearance is such that it is impossible to correctly identify

the individual. Reducing shape and texture components, leads to a great increase in the

recognition rates. However, results in this case are slightly worse than for the painted face.

This is due to the fact that the surface of the face is not smooth in this case and so, slight

changes in the position of the face lead to significant changes in the subtracted images. Figure

3.20 shows frames of an original and subtracted sequence for both the painted face and the

face with foam. It can be observed that the subtracted frames in the latter case contain areas

which should have the grey level 128, indicating that there is no movement, but present other

values (e.g. cheeks and forehead). This does not occur so significantly with the painted face,

where there is greater definition of the face. Moreover, it has been observed that increasing

the number of blocks leads to worse recognition results when using the subtracted data set

for the face with foam. This can be explained by the fact that a more detailed description of

the face is obtained, and so these areas that incorrectly present movement lead to errors.

It has been demonstrated that facial dynamics is an efficient biometric since it is clearly

possible to perform identity recognition even when the individual is “masked”. Based on this

information, an attempt to emphasise facial dynamics is performed in the next section, where

a new procedure which uses optical flow is presented.



Chapter 3. Identity and Expression Recognition 40

Step
2 5 10 15 20

Length
30 83.33% 66.67% 66.67% 83.33% 83.33%
40 83.33% 66.67% 66.67% 66.67% 100%
50 66.67% 83.33% 66.67% 66.67% 66.67%

Step
2 5 10 15 20

Length
30 0.00% 0.00% 0.00% 0.00% 0.00%
40 0.00% 0.00% 0.00% 0.00% 0.00%
50 0.00% 0.00% 0.00% 0.00% 0.00%

Table 3.16: Results of overall identity recognition (face with foam) for different stream lengths
and steps, and using both the subtracted (left) and the original (right) databases.

Figure 3.20: Example frames (original and subtracted) of the same individual performing a
facial expression with different appearances.

3.5 Tensor Analysis of Optical Flow Streams

Comparing to the previous procedure, the only difference in the present one is that, instead of

using grey images of the faces for computing VLBPs, this method calculates optical flow fields

of the grey images (after alignment), both from the original and the subtracted data sets,

as described in section 2.3. For each facial expression sequence, optical flow is computed for

each pair of consecutive frames, so that the resulting sequence contains minus one frame than

the sequence of images. This procedure is similar in some aspects to the one from [33], as it

uses optical flow and LBP. However, it is used for gait recognition and does not use VLBP, as

opposed to the present one. As explained in section 2.3, for every pixel of every frame there

is a corresponding velocity vector [vx vy]. Thus, for each sequence of images, the optical

flow algorithm returns two sequences of velocity fields, one in the horizontal direction, and

the other in the vertical direction. Figure 3.21 shows the velocity fields (bottom rows) in the

horizontal (left) and vertical (right) directions for the two pairs of grey scale images. Notice

that the pair of subtracted images is obtained from the pair of original images, by subtracting

the first frame. Since optical flow only has non-zero values for pixels which exhibit motion, its

computation using original data sets produces sequences which already greatly minimise shape

components and remove texture information. However, since different results are obtained

using the original or the subtracted data sets, experiments will be performed using both. The

difference, as can be observed in figure 3.21, is mainly in the intensity of the pixels, which

corresponds to velocity amplitudes, and not in the patterns obtained. In both pictures, the
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Figure 3.21: Example frames of Database 4 (top rows) and corresponding directional velocity
fields (bottom rows).

cheek and mouth regions are the ones which exhibit greater motion, as expected.

In order to use all the directional information, each sequence of optical flow fields (horizontal

and vertical) is used for computing a histogram, as explained in section 3.4. For each sequence

of images, the two histograms obtained are concatenated, producing a vector twice as long

as the one obtained in the previous procedure. Thus, this method is computationally more

costly, being this the reason for the choice of parameters in the following experiments.

3.5.1 Experimental Results

Experiments using this procedure are performed using databases 1, 3 and 4. Database 2 was

not used because it comprises a high number of individuals, making the training stage of

this method computationally expensive. However, the remaining databases are sufficient for

performing a proper evaluation.

3.5.1.1 Database 1

For the aforementioned reason, experiments with Database 1 were performed similarly to the

previous section, except for the cases where 5 × 4 blocks were used. Tables 3.17 and 3.18

show the results for different stream lengths and step sizes, using 3×2 blocks, for the original

and the subtracted data sets, respectively. The values of the stream lengths used are 1 frame

smaller than the ones used in the previous section because the complete sequences in the case

are also one frame smaller. Considering identity recognition rates, it can be observed that

using the original database slightly better results are obtained. This is due to the fact that

static and dynamic areas are more distinguishable because the amplitudes of the velocity

vectors have greater variation. However, in this case, the difference is smaller because, in

both cases, texture and shape information is considerably minimised. Using the subtracted
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Length
39 49

Step
5 97.92% 100%
10 98.96% 100%
15 97.92% 100%

Length
39 49

Step
5 79.17% 73.96%
10 83.33% 73.96%
15 71.88% 73.96%

Table 3.17: Results of overall identity (table on the left) and expression (table on the right)
recognition for different stream lengths and steps, and using the original database. 3 × 2 blocks

were used.

Length
39 49

Step
5 98.96% 98.96%
10 97.92% 98.96%
15 96.88% 98.96%

Length
39 49

Step
5 82.29% 83.33%
10 81.25% 83.33%
15 78.12% 83.33%

Table 3.18: Results of overall identity (table on the left) and expression (table on the right)
recognition for different stream lengths and steps, and using the subtracted database. 3×2 blocks

were used.

Subtracted DB Original DB
Blocks Identity Recog. Expression Recog. Identity Recog. Expression Recog.

1x1 56.25% 47.92% 79.17% 51.04%
3x2 92.92% 81.25% 98.96% 83.33%
3x3 98.96% 85.42% 100% 76.04%

Table 3.19: Recognition rates for different blocks sizes, using Database 1 with stream length 39
and step size 10 frames.

data set leads to better overall expression recognition results. Direct comparison cannot be

made since, in this case, only 3 × 2 blocks are used, as opposed to the previous case where

there were 5 × 4 blocks, leading to more detailed descriptions and thus, better results. In

table 3.19, the number of blocks is varied, maintaining the stream length and step size in 39

and 10 frames, respectively. It can be confirmed that increasing the number of blocks, leads

to overall better identity and expression recognition results. Using a significant amount of

blocks, good results can be obtained, demonstrating the effectiveness of this method.

3.5.1.2 Database 3

Identical experiments as the ones performed in the previous section using Database 3, were

conducted with the present method. Table 3.20 shows the results. Direct comparison shows

that using the subtracted data set, better results are obtained, leading to the conclusion that

this method extracts more information from the same set of images. In identity recognition,

up to 21% increase in the rates was achieved. Considering expression recognition, the im-

provement is not so significant. However, for many combinations of stream length and step

size, an increase of over 5% was obtained. With the original database, expression recognition

results are considerably better in this case, which is expected since most of the texture and
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Subtracted DB Original DB
Blocks Length, Step Identity Recog. Expression Recog. Identity Recog. Expression Recog.

15,10 66.67% 78.33% 80.00% 56.67%
3x2 20,15 55.00% 60.00% 85.00% 50.00%

25,15 85.00% 85.00% 93.33% 88.33%
15,10 90.00% 90.00% 95.00% 95.00%

5x4 20,15 81.67% 73.33% 96.67% 71.67%
25,15 100% 100% 100% 100%

Table 3.20: Recognition rates for different blocks sizes, stream lengths and step sizes, using
Database 3.

shape information is not present, yielding less interpersonal differences. One important con-

clusion is that even without this texture and shape information, very good identity recognition

results are obtained with this method.

3.5.1.3 Databases 1 and 4

Lastly, the present procedure is tested using Databases 1 and 4, identically to the previous

section. Here, since using both the original and the subtracted data sets leads to the removal

of texture and shape components, it is expected that both data sets yield good results in

identity recognition. Figure 3.22 depicts the row vectors of the people subspace matrix

(obtained from applying HOSVD to the tensor) as filled circles, and the projections of all

the query sequences. Crosses represent the streams performed with the painted face and

asterisks refer to the face with foam. For both the subtracted (picture on the left) and the

original (picture on the right) data sets, it can be observed that all the query streams are

projected to locations close to the target individual (brown circle). This does not happen

when using the previous method (section 3.4) with the original data set, as already explained.

Experiments performed with this method have shown that a 100% identity recognition rate

is obtained for the streams performed with the painted face, whether using the original

or the subtracted data set, and for many combinations of stream lengths, step sizes and

number of blocks. Table 3.21 shows the identity recognition results for the streams performed

with the individual’s face covered with foam, using one bloc. It can be observed that using

the original data set yields better results, which can be explained by the fact that greater

variation in the amplitudes of the velocity vectors is obtained in this case, allowing a better

distinction between dynamic and static areas. Comparing to the previous experiment with

these databases, slightly worse results are obtained in this case, where at most one more

query stream was incorrectly classified. However, increasing the number of blocks to 3 × 3

leads to a 100% recognition rate for every combination of stream length and step size, when

using the original data set. This is a very significant improvement, which demonstrates that

optical flow is an efficient descriptor of facial motion. Table 3.22 shows the results when using
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Figure 3.22: 3 representation of row vectors of the people subspace matrix using the subtracted
data set (left) and the original data set (right). The projection of the query sequences is also

shown.

Step
5 10 15 20

Length
30 50.00% 50.00% 66.67% 66.67%
40 66.67% 50.00% 66.67% 50.00%
50 66.67% 66.67% 66.67% 66.67%

Step
5 10 15 20

Length
30 66.67% 83.33% 50.00% 83.33%
40 66.67% 66.67% 66.67% 83.33%
50 66.67% 66.67% 66.67% 66.67%

Table 3.21: Results of overall identity recognition (face with foam) for different stream lengths
and steps, and using both the subtracted (left) and the original (right) databases. 1 × 1 blocks

were used.

Step
5 10 15 20

Length
30 100% 100% 100% 100%
40 100% 100% 100% 100%
50 100% 100% 100% 100%

Step
5 10 15 20

Length
30 100% 100% 100% 100%
40 83.33% 83.33% 83.33% 83.33%
50 66.67% 83.33% 83.33% 83.33%

Table 3.22: Results of overall identity recognition for different stream lengths and steps, and
using the subtracted database. The left table refers to the painted face and the right table refers

to the face covered with foam. 3× 3 blocks were used.

the subtracted data set, for both appearances of the individual’s face, which are considerably

better than the ones obtained without using optical flow. These experiments are very useful

for demonstrating the superiority of the present method in relation to the previous one. It

is evident that optical flow is a good descriptor of facial motion, being able to remove shape

and texture information, which is crucial in experiments where the individual’s appearance is

significantly different from the original. A new procedure is proposed in the following section,

making use of the properties of optical flow.
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3.6 Optical Flow Tensors

The last procedure uses tensors for both subspace separation, as in the previous procedures,

and sequence representation, as in [34]. Firstly, using the directional optical flow fields (hori-

zontal and vertical), new sequences are created by calculating the angle of each velocity vector,

in the interval [−π/2, π/2], in the velocity fields. Figure 3.23 shows the phase component of

the velocity field obtained from the two pairs of images. Darker areas (near black) correspond

approximately π/2 rad. Light areas (near white) correspond to −π/2 rad, which are vertical

velocities in the negative direction. Grey areas, near the grey level 128, correspond to null

angles, which indicate horizontal velocities. For both the original and the subtracted data

sets, it is possible to identify facial features in the phase image, such as the mouth and eye

region. For the subtracted data set, the values obtained for the angles are more constant

in the whole image. Afterwards, each stream of the phase of the velocity fields (part of a

Figure 3.23: Phase component of the velocity field obtained from pairs of frames from the
original and the subtracted data set.

sequence) is used for creating a vector, as follows:

1. Each stream is divided into volumes, as explained in section 3.4, with the depth equal

to the stream length;

2. For each volume, sub-volumes are created with the same width and height, and with

depth equal to 3 frames. Each sub-volume is created by moving the window of size 3

frames with step 1 along the whole stream;

3. For each sub-volume, a histogram of the values of the velocity angles is created. The

histograms have B bins, which is a user-defined value;

4. The histograms are used for creating a 4D tensor T ∈ RM×N×V×B, where M × N is

the number of blocks, V is the number of sub-volumes in each volume and B is the

number of bins. This step is slightly different from the one in [34], where 3D tensors

are created because the volumes are not divided into sub-volumes. The goal here is to

add a temporal component, as in VLBP;

5. Lastly, each tensor, which corresponds to a stream, is vectorised into a M · N · V · B-

element vector.
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Figure 3.24: Steps of the creation of the vectors for constructing the tensor.

Figure 3.24 illustrates the first four steps of the creation of the vectors which represent the

streams. The set of vectors created from the set of training streams are used for constructing

the tensor, as in the previous procedures. Classification is performed in an identical manner.

3.6.1 Experimental Results

This last procedure is tested with databases 1 and 4, for assessing its performance. Recogni-

tion results are shown and discussed.

3.6.1.1 Database 1

Experiments with Database 1 were performed for analysing the efficacy of this procedure.

Tables 3.23 and 3.24 show the results for varying stream lengths and step sizes. It can be

observed that using the subtracted data set leads to better identity and expression recognition

results, which can be explained by the fact that less noisy information is present. From figure

3.23, it has been observed that more constant values of the angles are obtained with the

subtracted data set. The great variations present when using the original data set constitute

noise, leading to worse results. Comparing to the results obtained in the previous section

with the original data set, better results can be achieved with the present method. This

demonstrates that, even using only the phase component of the velocity fields, it is possible

to obtain good recognition results. Results in table 3.25 demonstrate that increasing the

number of blocks leads to better identity and expression recognition, as expected since a

more detailed description of the facial motion can be obtained. Direct comparison with the

experiments in the previous section show that the present method produces worse results,

particularly if the number of blocks is small. Since the only information extracted from the

optical flow fields is the phase (the amplitude is discarded), it is more difficult to perform
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Length
39 49

Step
5 83.33% 84.38%
10 80.21% 84.38%
15 81.25% 84.38%

Length
39 49

Step
5 82.29% 75.00%
10 77.08% 75.00%
15 67.71% 75.00%

Table 3.23: Results of overall identity (table on the left) and expression (table on the right)
recognition for different stream lengths and steps, and using the original database. 5 × 4 blocks

and 36 bins were used.

Length
39 49

Step
5 100% 96.88%
10 98.96% 96.88%
15 94.79% 96.88%

Length
39 49

Step
5 88.54% 86.46%
10 86.46% 86.46%
15 77.08% 86.46%

Table 3.24: Results of overall identity (table on the left) and expression (table on the right)
recognition for different stream lengths and steps, and using the subtracted database. 5×4 blocks

and 36 bins were used.

Subtracted DB Original DB
Blocks Identity Recog. Expression Recog. Identity Recog. Expression Recog.

1x1 56.25% 30.21% 40.63% 22.92%
3x2 66.67% 69.79% 56.25% 63.54%
3x3 85.42% 72.92% 65.62% 61.46%
5x4 98.96% 86.46% 80.21% 77.08%

Table 3.25: Recognition rates for different blocks sizes, using Database 1 with stream length 39,
step size 10 frames and 36 bins.

Subtracted DB Original DB
Bins Identity Recog. Expression Recog. Identity Recog. Expression Recog.

8 96.88% 83.33% 82.29% 73.96%
36 98.96% 86.46% 80.21% 77.08%
72 97.92% 87.50% 83.33% 77.08%
180 96.88% 89.58% 89.58% 82.29%

Table 3.26: Recognition rates for different blocks sizes, using Database 1 with stream length 39,
step size 10 frames and 5× 4 blocks.

recognition in this case. A significant improvement with the increase in the number of blocks

used is an indication that using only the phase information interferes with the recognition.

Increasing the number of bins of the histograms, leads to a more specific information since the

amplitude of each bin decreases, and different angle values are more distinguishable. Table

3.26 shows that, in fact, better recognition rates are obtained when more bins are used. In

fact, very good recognition results are obtained in this case if the number of bins is high,

showing that using only the phase components of the optical fields is enough for performing

recognition. The drawback is that this makes the procedure more computationally costly.
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Step
2 5 10 15 20

Length
30 50.00% 50.00% 50.00% 50.00% 50.00%
40 50.00% 33.33% 66.67% 50.00% 50.00%
50 50.00% 50.00% 50.00% 50.00% 50.00%

Step
2 5 10 15 20

Length
30 83.33% 100% 100% 100% 100%
40 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100%

Table 3.27: Results of overall identity recognition (face with foam) for different stream lengths
and steps, and using both the subtracted (left) and the original (right) databases. 1 × 1 blocks

and 36 bins were used.

3.6.1.2 Databases 1 and 4

The present procedure was also tested with databases 1 and 4, as in the previous sections.

Figure 3.25 shows a 3D representation of the row vectors relative to each individual as well

as the projection of the query streams for both the painted face (crosses) and the face with

foam (asterisks). Comparison with figures 3.19 and 3.22 show that, in this case, the distance

between the target vector and the projections of the query sequences is considerably smaller

when using the original data set. This indicates that this method is able to discard the noisy

information that is present in this experiments, where the individual’s appearance is altered.

Results show that for the query streams sampled from the sequences filmed with the painted

face, varying stream lengths, step sizes and the number of blocks, 100% identity recognition

rate is always obtained, for both the original and the subtracted data sets. When testing

with the face covered with foam, slightly worse results are obtained, especially with a small

number of blocks, due to the fact that not enough detail is used. This can be observed in

tables 3.27 and 3.28, which show the results when using only one block or a set of 3 × 3

blocks, respectively. Very good identity results are achieved when using the original data set:

100% identity recognition rates were obtained for most of the combinations of stream length

and step sizes. Comparing to the results obtained in the previous section, this method yields

better results, showing that the phase component is sufficient for performing recognition. For

the subtracted data set, the present method produces worse results than the previous one, for

the experiments performed with the face covered with foam. With the subtracted database,

the grey levels of the faces are more constant. In this case, since altered faces are used, it is

important to have a greater texture distinction between the more static areas of the face and

the dynamic ones. This is obtained with the original data set. For the subtracted data set,

static areas present variations in the grey levels of the same amplitude as the variations in

the dynamic areas. Thus, the phase component of the optical flow fields in the static areas

constitute noisy information, leading to worse results. Figure 3.26 shows the phase component

of the optical flow fields computed for the four pairs of images. It can be observed that using

the original data set leads to a greater distinction of the angles between static and dynamic

areas. The present method demonstrates that using only partial information extracted

from the optical flow fields is sufficient for performing identity and expression recognition.
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Figure 3.25: 3D representation of the row vectors of the people subspace matrix using the
subtracted data set (left) and the original data set (right). The projection of the query sequences

is also shown.

Step
2 5 10 15 20

Length
30 50.00% 50.00% 50.00% 50.00% 50.00%
40 66.67% 66.67% 66.67% 83.33% 83.33%
50 100% 66.67% 66.67% 66.67% 66.67%

Step
2 5 10 15 20

Length
30 100% 100% 100% 100% 100%
40 100% 100% 100% 100% 100%
50 100% 100% 100% 100% 100%

Table 3.28: Results of overall identity recognition (face with foam) for different stream lengths
and steps, and using both the subtracted (left) and the original (right) databases. 3 × 3 blocks

and 36 bins were used.

Figure 3.26: Angular component of the optical flow fields of the pairs of images from the original
(left column) and the subtracted (right column) data sets.

This procedure yielded better results than the previous one when using the original data set,

for the case when the individual’s appearance is altered.

3.7 Description of the Databases

3.7.1 Database 1

The first data set, referred to as Database 1, is comprised of 112 facial expression sequences as

it includes 4 people performing the 6 basic emotions (anger, disgust, fear, happiness, sadness
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and surprise) plus the neutral one, 4 times each. Each sequence includes the onset, apex and

offset of the facial expression. All four people are of the male gender. This database was

created as part of the work developed in [16].

3.7.2 Database 2

This data set includes 29 individuals performing the six basic emotions, one time each. Not

all facial expressions include the onset or the offset. Of these 29 people, 14 are female and 15

are male. This database includes a high variety of ethnicity. This database is a subset of the

BU-4DFE Database [35].

3.7.3 Database 3

Database 3 includes 10 people (7 male, 3 female), each performing the six basic facial expres-

sions once. The frames of this data set were created from 3D models, and thus the frames

are registered, i.e., all the frames present zero rotation, translation and scale components in

relation to a reference frame. Each sequence includes the onset, apex and offset of the facial

expression. This database was created in the Computer and Robot Vision Laboratory of the

Institute of Systems and Robotics at the University of Coimbra.

3.7.4 Database 4

This is the only database constructed as part of the present work. It includes one individual

performing the six basic facial expressions, 3 times each. One repetition is performed with

the normal appearance, another one is performed with the individual having her face painted

and and, for the remaining one, the individual’s face is covered with white foam, changing

her appearance significantly. Each sequence includes the onset, apex and offset of the facial

expression. Figure 3.27 shows example frames of the individuals of this database.

Figure 3.27: Example frames of Database 4.
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Conclusion

The main focus of this thesis is to demonstrate that facial dynamics - in the form of facial

expressions such as happiness, surprise, and anger - constitute a biometric, i.e., can be utilised

for performing identity recognition. Several identity and expression recognition methods were

developed, mostly based on tensor analysis, due to its great properties in subspace separation.

Different approaches in relation to data description have been considered, including Active

Shape Models (ASM), which provide shape information, and Local Binary Patterns (LBP),

which produce texture descriptors.

Throughout the implementation of this work, important conclusions and observations have

been made. Firstly, it has been observed that, in the presence of a significant number of

individuals, using dynamic information alone, by minimising or even removing shape and

texture information, yields better recognition results. This indicates that the interpersonal

differences, more evident in shape and texture cues, constitute disadvantageous information

when encoding the different facial expressions. Moreover, it has been observed that perform-

ing data analysis using tensors produces better results than using Dynamic Time Warping

(DTW) in conjunction with Principal Component Analysis (PCA). Since texture information

gives a much more detailed description of the faces, significantly better results are obtained

when using it, instead of using shape information alone. Even if the subtracted data sets

are used, dynamic information is considered in every pixel of every frame, as opposed to case

of ASM where only the N feature points which belong to the ASM are considered. Results

obtained from experiments using Optical Flow fields have produced better results than using

the grey scale images without processing. This demonstrates that extracting the dynamic

cues using this method leads to a more informative data in the sense that the facial motion

is described more accurately. This fact is clearly observed from the experiments performed

with the database which includes the individual’s appearance considerably altered, because

very good recognition rates have been obtained. The relevance of the good results obtained

51
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with this database is that they evince the fact that facial dynamics is indeed a proper bio-

metric, because the individual cannot be identified using its texture and shape information

alone, being this the main focus of this work.

Improvement in recognition rates could be achieved by using an ASM with more feature

points, located in areas where motion is present, such as the top of the cheeks. The ASM

must be trained with landmarked images of the individuals of the considered database for

better fitting to the faces, which was not the case with one of the ASMs used in this work.

Moreover, as already mentioned, the software for locating faces may return poor results in

the presence of total or partial occlusion of the eyes. This leads to incorrect registration of

the faces, which is undesirable when performing Volume LBP. Thus, another possible im-

provement would be to use a set of three points which would be tracked in each frame and

afterwards used for registering the faces by rotating, translating and scaling in relation to

a reference frame. However, the efficiency of the presented procedures shows that they are

adequate for inclusion in automatic systems. It is important to notice that most of the com-

putational cost is due to the training stage of the procedures, and testing is not significantly

time consuming. Some novelty is introduced because the proposed methods constitute inno-

vative aggregations of existing techniques.

In the future, similar experiments with the proposed procedures could be made, but incor-

porating 3D data and using both shape and texture descriptors. Moreover, it would be

interesting to test the procedures with a registered database containing a significant number

of individuals performing the facial expressions repetitively.
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